首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393556篇
  免费   43656篇
  国内免费   34155篇
工业技术   471367篇
  2024年   1374篇
  2023年   6535篇
  2022年   10575篇
  2021年   14501篇
  2020年   12939篇
  2019年   11582篇
  2018年   11061篇
  2017年   14378篇
  2016年   15507篇
  2015年   16864篇
  2014年   19990篇
  2013年   24749篇
  2012年   27642篇
  2011年   32301篇
  2010年   23859篇
  2009年   25092篇
  2008年   24752篇
  2007年   28352篇
  2006年   26486篇
  2005年   21937篇
  2004年   18812篇
  2003年   15476篇
  2002年   12376篇
  2001年   9523篇
  2000年   8183篇
  1999年   6632篇
  1998年   5457篇
  1997年   4449篇
  1996年   3734篇
  1995年   3109篇
  1994年   2652篇
  1993年   2004篇
  1992年   1669篇
  1991年   1277篇
  1990年   1161篇
  1989年   959篇
  1988年   620篇
  1987年   385篇
  1986年   375篇
  1985年   384篇
  1984年   347篇
  1983年   217篇
  1982年   312篇
  1981年   161篇
  1980年   190篇
  1979年   70篇
  1978年   42篇
  1977年   39篇
  1976年   36篇
  1975年   40篇
排序方式: 共有10000条查询结果,搜索用时 47 毫秒
81.
The solid solutions based on the pyrochlore-type system Bi2MgNb2-xTaxO9 were formed in the compositional range х = 0–2.0 (Bi1·6Mg0·8Nb1.6-tTatO7.2, t = 0–1.6). The Rietveld method was used to refine the structure for Bi2MgNb2-xTaxO9 (x = 0, 1.0, 2.0). The increasing tantalum content led to the slight decrease in the cubic unit cell parameters from 10.56934 (4) Å for x = 0 and 10.54607 (3) Å for x = 2 (sp.gr. Fd-3m:2). At the same time, tantalum additions suppressed grain growth in the pyrochlore ceramics during sintering and made it possible to obtain materials with an average grain size of 1–2 μm (Bi1·6Mg0·8Ta1·6O7.2). The increase in the Ta5+ concentration led to the decrease in the dielectric permeability from 104 (Bi1·6Mg0·8Nb1·6O7.2) to 20 (Bi1·6Mg0·8Ta1·6O7.2) at room temperature, while the dielectric loss tangent remained lower than 0.002, which is due to the small grain size and the high porosity of the samples. An increase in temperature has practically no effect on the values of the dielectric permittivity in the entire frequency range. The samples have weak through conductivity. The activation energies of electrical conductivity varied in the range of 0.84–1.00 eV, and the less tantalum, the lower the activation energy. The electrical properties of the samples at 200 Hz to 1 MHz are described by the simplest parallel scheme.  相似文献   
82.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
83.
Prediction of mode I fracture toughness (KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression (LMR) and gene expression programming (GEP) methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and elastic modulus (E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets. Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156, respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2 value and lower errors.  相似文献   
84.
In this study, the synthesis and luminescence characterization of Samarium (Sm3+) doped lithium metasilicate (Li2SiO3) phosphor ceramic were investigated. It was presented and discussed the results obtained on the luminescence and other optical studies such as X-ray diffraction (XRD), optical absorption and luminescence properties of Li2SiO3:Sm3+ phosphor ceramic. The Li2SiO3 compound was shown a characteristic phase in XRD. The doping in the lithium compound was not having a significant effect on the basic crystal structure of the material. The maximum photoluminescence (PL) emission for Sm3+ doped Li2SiO3 was observed at 554, 583, 641, 725 nm and bore resemblance to the visible region of the spectrum. The glow curves of all synthesized materials have a complex peak structure after being irradiated with a 90Sr–90Y beta source. In addition, the peak between 400 and 600 nm was seen in the radioluminescence (RL) spectrum because of a wide peak thought to be caused by silicate.  相似文献   
85.
In this study the constructional modification of Graphitic carbon nitride nanosheet (GCN-ns) has been made with the aid of ZnCr layered double hydroxide (ZC-LDH) in a unique 2D-2D structure to enhance its visible light absorption. Optical and morphological study presents successful incorporation of ZC-LDH on the surface of GCN-ns. Through adjusting of GCN-ns by ZC-LDH lower recombination rate of e?/h+ pairs, longer lifetimes and an increase in contamination reduction was brought out. The binary nanocomposite was employed to effectively degrade Rhodamine B under UV/vis light irradiation. The improvement in photocatalytic abilities was proven to be related to in situ self-production of H2O2 on GCN-ns/ZC-LDH surface by Xe light irradiation which in return accounts for additional hydroxide radical generation. Radical quenching experiments specified the main active species involved while the consequent step-scheme (S-scheme) charge transfer mechanism was proposed.  相似文献   
86.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
87.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
88.
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.  相似文献   
89.
Leucine-rich repeat kinase 2 (LRRK2) is a major causative gene of late-onset familial Parkinson’s disease (PD). The suppression of kinase activity is believed to confer neuroprotection, as most pathogenic variants of LRRK2 associated with PD exhibit increased kinase activity. We herein report a novel LRRK2 variant—p.G2294R—located in the WD40 domain, detected through targeted gene-panel screening in a patient with familial PD. The proband showed late-onset Parkinsonism with dysautonomia and a good response to levodopa, without cognitive decline or psychosis. Cultured cell experiments revealed that p.G2294R is highly destabilized at the protein level. The LRRK2 p.G2294R protein expression was upregulated in the patient’s peripheral blood lymphocytes. However, macrophages differentiated from the same peripheral blood showed decreased LRRK2 protein levels. Moreover, our experiment indicated reduced phagocytic activity in the pathogenic yeasts and α-synuclein fibrils. This PD case presents an example wherein the decrease in LRRK2 activity did not act in a neuroprotective manner. Further investigations are needed in order to elucidate the relationship between LRRK2 expression in the central nervous system and the pathogenesis caused by altered LRRK2 activity.  相似文献   
90.
《Ceramics International》2021,47(22):31852-31859
The primary purpose of this work is to introduce the second phase of graphene (G) into non-stoichiometric TiO1.80 successfully and optimize the thermoelectric properties of this composite material through high pressure and high temperature (HPHT) technology. The purpose of doping Ti powder under high pressure is to create a closed reducing atmosphere to change the ratio of titanium to oxygen in the titanium oxide base. The addition of graphene can considerably improve the electrical properties of the material and reduce its resistivity. An X-ray diffractometer, X-ray photoelectron spectrometer, scanning electron microscope, and transmission electron microscope were used to analyze and characterize the phase structure, chemical bond, micro morphology and crystal morphology of the samples. An abundance of grain boundaries and lattice dislocation defects can inhibit the lattice thermal conductivity. We also tested and analyzed the thermoelectric performance of the high-temperature and high-pressure synthetic samples through a variable temperature system. The variation of the absorption intensity of the ultraviolet UV spectrum with wavelength shows that high pressure can reduce the band gap, which is beneficial to the carrier transition and improves the conductivity of semiconductors. HPHT optimizes both the electrical and the thermal parameters of the sample. At a final sintering pressure of 5.0 GPa, the dimensionless figure of merit (zT) of the bulk composite material G/TiO1.80 was found to be 0.23 at 700 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号