首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   94篇
  国内免费   1篇
工业技术   265篇
  2023年   8篇
  2022年   4篇
  2021年   11篇
  2020年   16篇
  2019年   17篇
  2018年   21篇
  2017年   17篇
  2016年   20篇
  2015年   27篇
  2014年   32篇
  2013年   28篇
  2012年   35篇
  2011年   12篇
  2010年   7篇
  2009年   1篇
  2008年   9篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
11.
A Co nanolayer is used as a local probe to evaluate the vertical inhomogeneous distribution of the electromagnetic (EM) field within a resonant metallic nanodisk. Taking advantage of the direct relation between the magneto-optical activity and the electromagnetic field intensity in the Co layer, it is shown that the nonuniform EM distribution within the nanodisk under plasmon resonant conditions has maximum values close to the upper and lower flat faces, and a minimum value in the middle.  相似文献   
12.
13.
14.
The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region.
  相似文献   
15.
16.
17.
A variety of alternative plasmonic and dielectric material platforms—among them nitrides, semiconductors, and conductive oxides—have come to prominence in recent years as means to address the shortcomings of noble metals (including Joule losses, cost, and passive character) in certain nanophotonic and optical‐frequency metamaterial applications. Here, it is shown that chalcogenide semiconductor alloys offer a uniquely broad pallet of optical properties, complementary to those of existing material platforms, which can be controlled by stoichiometric design. Using combinatorial high‐throughput techniques, the extraordinary epsilon‐near‐zero, plasmonic, and low/high‐index characteristics of Bi:Sb:Te alloys are explored. Depending upon composition they can, for example, have plasmonic figures of merit higher than conductive oxides and nitrides across the entire UV–NIR range, and higher than gold below 550 nm; present dielectric figures of merit better than conductive oxides at near‐infrared telecommunications wavelengths; and exhibit record‐breaking refractive indices as low as 0.7 and as high as 11.5.  相似文献   
18.
Terahertz (THz) technology promises important applications including imaging, spectroscopy, and communications. However, one of limitations at present for advancing THz applications is the lack of efficient devices to manipulate THz waves. Here, our recent important progresses in THz functional devices based on artificial microstructures, such as photonic crystal, metamaterial, and plasmonic structures, have been reviewed in this paper, involving the THz modulator, isolator, and sensor. These THz microstructure functional devices exhibit great promising potential in THz application systems.  相似文献   
19.
Resistive switching memories are nonvolatile memory cells based on nano‐ionic redox processes and offer prospects for high scalability, ultrafast write and read access, and low power consumption. In two‐terminal cation based devices a nanoscale filament is formed in a switching material by metal ion migration from the anode to the cathode. However, the filament growth and dissolution mechanisms and the dynamics involved are still open questions, restricting device optimization. Here, a spectroscopic technique to optically characterize in situ the resistive switching effect is presented. Resistive switches arranged in a nanoparticle‐on‐mirror geometry are developed, exploiting the high sensitivity to morphological changes occurring in the tightly confined plasmonic hotspot within the switching material. The focus is on electrochemical metallization and the optical signatures detected over many cycles indicate incomplete removal of metal particles from the filament upon RESET and suggest that the filament can nucleate from different positions from cycle to cycle. The technique here is nondestructive and the measurements can be easily performed in tunable ambient conditions and with realistic cell geometries.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号