首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47590篇
  免费   5665篇
  国内免费   1969篇
工业技术   55224篇
  2024年   155篇
  2023年   1266篇
  2022年   1762篇
  2021年   2912篇
  2020年   2209篇
  2019年   2085篇
  2018年   1675篇
  2017年   2068篇
  2016年   2016篇
  2015年   1979篇
  2014年   3172篇
  2013年   3121篇
  2012年   3339篇
  2011年   4162篇
  2010年   2959篇
  2009年   2698篇
  2008年   2502篇
  2007年   2612篇
  2006年   2272篇
  2005年   1870篇
  2004年   1486篇
  2003年   1220篇
  2002年   1017篇
  2001年   864篇
  2000年   720篇
  1999年   525篇
  1998年   443篇
  1997年   381篇
  1996年   294篇
  1995年   263篇
  1994年   241篇
  1993年   175篇
  1992年   143篇
  1991年   108篇
  1990年   78篇
  1989年   73篇
  1988年   49篇
  1987年   44篇
  1986年   37篇
  1985年   55篇
  1984年   31篇
  1983年   29篇
  1982年   25篇
  1981年   13篇
  1980年   22篇
  1979年   11篇
  1978年   5篇
  1975年   4篇
  1974年   4篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
52.
The need to reduce PEMFC systems cost as well as to increase their durability is crucial for their integration in various applications and especially for transport applications. A new simplified architecture of the anode circuit called Alternating Fuel Feeding (AFF) offers to reduce the development costs. Requiring a new stack concept, it combines the simplicity of Dead-End Anode (DEA) with the operation advantages of the hydrogen recirculation. The three architectures (DEA, recirculation and AFF) are compared in terms of performance on a 5-kW test bench in automotive conditions, through a sensitivity analysis. A gain of 17% on the system efficiency is observed when switching from DEA to AFF. Moreover, similar performances are obtained both for AFF and for recirculation after an accurate optimization of the AFF tuning parameters. Based on DoE data, a gain of 25% on the weight of the anodic line has been identified compared to pulsed ejector architecture and 43% with the classic recirculation architecture with blower only (Miraï).  相似文献   
53.
Gastric cancer is still a leading cause of cancer-related mortality worldwide in spite of declining incidence. Gastric cancers are, essentially, adenocarcinomas and one of the strongest risk factors is still infection with Helicobacter pylori. Within the last years, it became clear that gastric self-renewal and carcinogenesis are intimately linked, particularly during chronic inflammatory conditions. Generally, gastric cancer is now regarded as a disease resulting from dysregulated differentiation of stem and progenitor cells, mainly due to an inflammatory environment. However, the situation in the stomach is rather complex, consisting of two types of gastric units which show bidirectional self-renewal from an unexpectedly large variety of progenitor/stem cell populations. As in many other tumors, cancer stem cells have also been characterized for gastric cancer. This review focuses on the various gastric epithelial stem cells, how they contribute to self-renewal and which routes are known to gastric adenocarcinomas, including their stem cells.  相似文献   
54.
In this paper, a model taking into account the effects of carrier loss mechanisms has been developed. The model simulates the photovoltaic properties of the graphene/n-type silicon Schottky barrier solar cells (G/n-Si_SBSC), and it can reproduce the experimentally determined parameters of the G/n-Si_SBSC. To overcome the low efficiencies of G/n-Si_SBSC, their performances have been optimized by modifying the work function of graphene and Si properties, accounted for variation of its thickness and doping level. The obtained results show that the work function of graphene has the major impact on the device performance. Also, the temperature dependence of the G/n-Si_SBSC performance is investigated.  相似文献   
55.
Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1–transient receptor potential melastatin 4 (Sur1–Trpm4) channels and, in some cases, microglial KATP (Sur1–Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.  相似文献   
56.
It is expected that demand response might provide soon ancillary services to the power system. This could be done, for example, by managing the use of Electric Vehicles (EV) batteries, or the production of flexible energy commodities such as hydrogen (H2), that can be used for fuel cell vehicles (H2EV) or in industrial processes. This paper analyses the impact of a transition to H2EV as an alternative to EV for passengers’ cars on a Spanish-like power sector. A simple H2 demand estimation is developed and provided to CEVESA, an operation and expansion model for the Iberian Power System Electricity Market (MIBEL). For this study, CEVESA was extended to include the investments and operation decisions of H2 production. Simulations were performed to determine the optimal evolution of the H2 production capacity and of the electricity generation mix, considering scenarios with different shares of EV and H2EV. The impact of H2EV vs EV mobility is assessed based on the recent Spanish National Plan for Energy and Climate (NECP) as the base case scenario. Results show that, even if H2EV mobility alternative is still more costly than EV, H2 production could provide a significant flexibility to the system that should also be appraised. Indeed, H2EV mobility could become a feasible and complementary alternative to decarbonize mobility by powering H2 production with the renewable generation surplus. This, together with the on-going learning process of this technology that will decrease its production costs and increase its efficiency in the coming years, could boost, even more, the development of the H2 economy.  相似文献   
57.
A study using three different pairs of electrochromic polymers (ECPs) synthesized onto plaques by means of a modified vapor phase polymerization (VPP) technique is presented. Restriction of the respective polymerization times, allowed both faster and slower polymerizing monomers to be controlled, and produced blended plaques with visually diffuse interfaces. The ECPs within the blended plaques retain their individual electrochromic behavior and when encapsulated into an electrochromic device, show outstanding optical switching performance with little degradation evident over 10,000 cycles, coupled with a switching time of the order of 1 second. Blends also allow multiple diffuse color changes within an electrochromic device, due to the difference in oxidation potentials of the individual ECPs, making them candidates for adaptive camouflage use. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42158.  相似文献   
58.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
59.
《Advanced Powder Technology》2020,31(10):4187-4196
Manganese oxide catalysts have been synthesized from the used batteries via hydrometallurgical method and effect of hydrometallurgical parameters such as the effect of acid type (H2SO4, HNO3, HCl), acid concentration (0.5, 1, 1.5, 2 %v/v) and powder to acid ratio (1/50, 1/60, 1/70, 1/80) were in detail investigated. The physico-chemical properties of as-prepared catalysts were characterized by FT-IR, XRD, FESEM, EDX, BET, TEM, and TPR-H2 analysis. The activity of as-prepared catalysts were investigated towards the oxidation of benzene, toluene, and xylene (BTX) in a plasma-catalytic process. The results show that benzene and toluene conversion were almost constant in the range of 97–98% in case of various acid types, acid concentrations and solid to liquid ratios. However, the xylene conversion were varied in case of different hydrometallurgical factors. The highest xylene conversion was obtained in the presence of MnS0.5–60, which was prepared using H2SO4 with concentration of 0.5%v/v and solid to liquid ratio of 1/60. The effect of the input voltage and BTX flow rate on the BTX conversion was also investigated using MnS0.5–60 catalyst in detail.  相似文献   
60.
Unreliable mobility values, and particularly greatly overestimated values and severely distorted temperature dependences, have recently hampered the development of the organic transistor field. Given that organic field‐effect transistors (OFETs) have been routinely used to evaluate mobility, precise parameter extraction using the electrical properties of OFETs is thus of primary importance. This review examines the origins of the various mobilities that must be determined for OFET applications, the relevant extraction methods, and the data selection limitations, which help in avoiding conceptual errors during mobility extraction. For increased precision, the review also discusses device fabrication considerations, calibration of both the specific gate‐dielectric capacitance and the threshold voltage, the contact effects, and the bias and temperature dependences, which must actually be handled with great care but have mostly been overlooked to date. This review serves as a systematic overview of the OFET mobility extraction process to ensure high precision and will also aid in improving future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号