首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41094篇
  免费   4563篇
  国内免费   2461篇
工业技术   48118篇
  2024年   183篇
  2023年   714篇
  2022年   1114篇
  2021年   1402篇
  2020年   1501篇
  2019年   1310篇
  2018年   1205篇
  2017年   1619篇
  2016年   1653篇
  2015年   1563篇
  2014年   2134篇
  2013年   2223篇
  2012年   2796篇
  2011年   2935篇
  2010年   2326篇
  2009年   2518篇
  2008年   2033篇
  2007年   2816篇
  2006年   2624篇
  2005年   2140篇
  2004年   1726篇
  2003年   1584篇
  2002年   1358篇
  2001年   1217篇
  2000年   1076篇
  1999年   863篇
  1998年   681篇
  1997年   582篇
  1996年   500篇
  1995年   397篇
  1994年   333篇
  1993年   287篇
  1992年   201篇
  1991年   154篇
  1990年   100篇
  1989年   60篇
  1988年   45篇
  1987年   34篇
  1986年   10篇
  1985年   20篇
  1984年   20篇
  1983年   5篇
  1982年   10篇
  1981年   3篇
  1980年   16篇
  1979年   11篇
  1977年   4篇
  1976年   2篇
  1956年   1篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《Ceramics International》2021,47(21):29681-29687
Inorganic piezoelectric ceramic composite is the potential sensing element for long-term structural health monitoring due to its excellent durability and compatibility. In this study, a Ceramicrete-based piezoelectric composite is proposed preliminarily, in which the magnesium potassium phosphate cement is used as the matrix and the lead zirconate titanate particle is utilized as the functional phase. Piezoelectric properties test and microstructure analysis are performed to evaluate the testing samples. Results show that the piezoelectric performance of the composite increase with the increase of piezoelectric ceramic particle size. The value of the piezoelectric strain factor (d33) can reach 83.8 pC/N, while the corresponding piezoelectric voltage factor (g33) is 50.1 × 10-3 V•m/N at the 50th day after polarization. Microstructure analysis illustrates that the interfacial transition zone (ITZ) between the matrix and the particles is dense. Moreover, the influence of aging on the composite is attributed to the continuous hydration after polarization. It indicates that the composites have a higher piezoelectric performance, which can be regarded as a promising sensing element material.  相似文献   
12.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
13.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
14.
15.
16.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
17.
《Ceramics International》2020,46(2):1990-2001
An overview of research on the synthesis of manganese titanates is presented. The xerogel of Mn–Ti–O–C–H composition was synthesized from manganese acetate and titanium tetrabutylate via liquid-phase method using organic solvents. The calcination of xerogel in air at 450 °C and 700 °C yielded manganese titanate precursors in the form of a nanostructured mixture of Mn2O3 and TiO2. Annealing at 1000 °C, manganese metatitanate MnTiO3 was obtained. Reference experiments with initial reagents included, separately, thermal decomposition of Mn(CH3COO)2×4H2O and the product of Ti(OC4H9)4 hydrolysis. The composition, structure, and properties of the products were studied using X-ray diffraction, scanning electron microscopy, elemental analysis, diffuse reflectance IR Fourier spectroscopy, thermogravimetry, and by measuring specific surface area. The data presented by these different techniques are basically consistent with each other (with an increase in the annealing temperature, an increase in globule size and decrease in specific surface area are observed; structuring occurs within the long- and short-range order; the size of the crystallites does not exceed that of the globules; elemental composition correlates with phase composition; the endothermic character of the reaction of MnTiO3 formation at 900 °C is confirmed by a thermodynamic calculation). Nevertheless, some unexpected effects were revealed (based on the FTIR diffuse reflection spectra, mixed oxide Mn–Ti–O is formed in the surface layer of particles already at 450 °C and 700 °C; etc.). Application of the proposed technique for modifying Al2O3 powders, with the aim of implementing low-temperature sintering of corundum ceramics, is discussed.  相似文献   
18.
ABSTRACT

A mathematical model has been developed by coupling genetic algorithm (GA) with heat and material balance equations to estimate rate parameters and solid-phase evolution related to the reduction of iron ore-coal composite pellets in a multi-layer bed Rotary hearth Furnace (RHF). The present process involves treating iron ore-coal composite pellets in a crucible over the hearth in RHF. The various solid phases evolved at the end of the process are estimated experimentally, and are used in conjunction with the model to estimate rate parameters. The predicted apparent activation energy for the wustite reduction step is found to be lower than those of the reduction of higher oxides. The thermal efficiency is found to decrease significantly with an increase in the carbon content of the pellet. Thermal efficiency was also found to increase mildly up to three layers. Multilayer bed remains as a potential design parameter to increase thermal efficiency.  相似文献   
19.
《Ceramics International》2019,45(15):18972-18979
Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.  相似文献   
20.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号