首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16783篇
  免费   1245篇
  国内免费   1381篇
工业技术   19409篇
  2024年   18篇
  2023年   162篇
  2022年   315篇
  2021年   473篇
  2020年   451篇
  2019年   481篇
  2018年   432篇
  2017年   506篇
  2016年   615篇
  2015年   522篇
  2014年   923篇
  2013年   1522篇
  2012年   943篇
  2011年   1123篇
  2010年   888篇
  2009年   945篇
  2008年   846篇
  2007年   938篇
  2006年   861篇
  2005年   868篇
  2004年   706篇
  2003年   722篇
  2002年   624篇
  2001年   532篇
  2000年   437篇
  1999年   418篇
  1998年   329篇
  1997年   261篇
  1996年   212篇
  1995年   222篇
  1994年   201篇
  1993年   160篇
  1992年   119篇
  1991年   140篇
  1990年   104篇
  1989年   67篇
  1988年   39篇
  1987年   58篇
  1986年   32篇
  1985年   48篇
  1984年   33篇
  1983年   22篇
  1982年   34篇
  1981年   6篇
  1980年   4篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1959年   32篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Electrochemical hydrogenation is an environmentally favorable alternative to chemical reduction of indigo because it performs under ambient conditions using water as the donor of hydrogen. The purpose of this work is to fabricate electrocatalysts with high activity and durability for electrocatalytic hydrogenation of indigo. This work compares the performances of a series of Ni based catalysts (Ni, NiMo, NiP and NiMoP) on the substrate of carbon felt (CF) for electrolyzing water. Both the overpotential and Tafel slop are decreased as a function of the components as Ni > NiMo > NiP > NiMoP. Hence, NiMoP/CF shows the excellent performance based on the thermodynamics (η10 = 239 mV) and kinetics (Tafel slope = 89.7 mV·dec?1) for splitting water. Further, the electrode of NiMoP/CF was used for the electrocatalytic hydrogenation of indigo. The conversion efficiency and Faradic efficiency can be improved as 26.2% and 10.7% respectively. Furthermore, the dyeing behavior of the electrohydrogenated indigo is similar to that of conventional reduction methods. Thus, the present work offers foundational results and paves the way for the design of new catalytic materials for the reduction of vat dyes.  相似文献   
2.
针对芳香硝基化合物的催化选择性加氢反应,开发可替代贵金属催化剂的低成本、高效非贵金属催化剂,对于芳香胺类化合物的绿色生产具有重要意义。利用简易、可规模化的制备方法,以镍—2,5-吡啶二羧酸金属有机框架为前驱体,热解制备了氮掺杂石墨碳包覆镍纳米催化材料(Ni@CN)。采用X射线衍射、扫描电镜、透射电镜、元素分析、N2吸脱附等检测手段对Ni@CN的物化性质进行了表征,并对其催化性能进行了评价。结果表明,Ni@CN可在温和条件下(85℃,1.0 MPa H2)高效加氢含取代官能团的芳香硝基化合物生成对应的芳香胺类化合物。对比试验表明,镍纳米颗粒是Ni@CN的加氢活性中心,而石墨碳壳的存在有利于优先吸附硝基官能团。此外,进一步考察了Ni@CN的循环使用性能以及抗硫化物中毒的特性。  相似文献   
3.
Hydrogen is currently receiving significant attention as an alternative energy resource, and among the various methods for producing hydrogen, methanol steam reforming (MSR) has attracted great attention because of its economy and practicality. Because the MSR reaction is inherently activated over catalytic materials, studies have focused on the development of noble metal-based catalysts and the improvement of existing catalysts with respect to performance and stability. However, less attention has been paid to the modification and development of innovative MSR reactors to improve their performance and efficiency. Therefore, in this review paper, we summarize the trends in the development of MSR reactor systems, including microreactors and membrane reactors, as well as the various structured catalyst materials appropriate for application in complex reactors. In addition, other engineering approaches to achieve highly efficient MSR reactors for the production of hydrogen are discussed.  相似文献   
4.
The effective and efficient utilization of low-calorific value (LCV) gases has gained increasing attention in scientific research and industrial fields. In this study, the combustion characteristics of three LCV gases in practical devices are analyzed by using a nonadiabatic perfectly stirred reactor model. The complete steady-state solution in the temperature-residence time parameter space is obtained with arc-length continuation. The stable operation region is quantified by the eigenvalue analysis. The transition of solution curves is quantified with heat loss coefficient. Five key system parameters are systematically investigated on their effects on stability limits. With the combustion performance being quantified by a combustion state index, a combustion state regulation method is proposed to find the optimal regulation path of system parameters. Active subspace method is further applied to shorten the regulation step by identifying the active direction. The proposed method and findings are useful for optimal regulation of burning LCV gases in industrial burners.  相似文献   
5.
ABSTRACT

It is important to perform neutron transport simulations with accurate nuclear data in the neutronics design of a fusion reactor. However, absolute values of large-angle scattering cross sections vary among nuclear data libraries even for well-examined nuclide of iron. Benchmark experiments focusing on large-angle scattering cross sections were thus performed to confirm the correctness of nuclear data libraries. The series benchmark experiments were performed at a DT neutron source facility, OKTAVIAN of Osaka University, Japan, by the unique experimental system established by the authors’ group, which can extract only the contribution of large-angle scattering reactions. This system consists of two shadow bars, target plate (iron), and neutron detector (niobium). Two types of shadow bars were used and four irradiations were conducted for one experiment, so that contribution of room-return neutrons was effectively removed and only large-angle scattering neutrons were extracted from the measured four Nb reaction rates. The obtained experimental results were compared with calculations for five nuclear data libraries including JENDL-4.0, JEFF.-3.3, FENDL-3.1, ENDF/B- VII, and recently released ENDF/B-VIII. It was found from the comparison that ENDF/B-VIII showed the best result, though ENDF/B-VII showed overestimation and others are in large underestimation at 14 MeV.  相似文献   
6.
Increasing the reaction temperature of the living cationic polymerization of isobutylene is crucial for industrial production due to the cost of refrigeration. The reaction temperature increase was achieved with an accelerated reaction rate using a flow reaction system. The polymerization conditions, including the flow reactor design, were based on the results of kinetic studies. Utilizing a milli‐scale flow reactor, polyisobutylene, which has a narrow molecular weight distribution, was obtained within a considerably short residence time at a high temperature. Furthermore, it was confirmed that the value of Mw/Mn correlates with the product of the Reynolds number and the angle of collision.  相似文献   
7.
A superhydrophilic Ru-based 3D electrode, denoted as Ru-PA/NF, was fabricated under the assistance of phytic acid (PA) for electrocatalytic hydrogenation of p-Nitrophenol. PA serves as a multifunctional modulator to facilitate the dispersion of active Ru species in porous nickel foam (NF), meanwhile enhance the surface wettability as well as adjust the micromorphology. In alkaline media, the Ru-PA/NF electrode shows the PNP conversion of 94.68% and the PAP selectivity of 99% after 9 h, accompanied by the faraday efficiency (FE) of 73.15%. Over the superhydrophilic Ru-PA/NF the rate constant of PNP conversion into PAP is 2.62-times higher than that over the hydrophobic Ru/NF prepared without the aid of PA, and FE of Ru-PA/NF is 1.28-times higher than Ru/NF. This can be ascribed to intriguing features of Ru-PA/NF involving higher Ru loading, more exposed sites, superior electrolyte wetting along with faster charge transfer rate.  相似文献   
8.
In this study, a multi-tubular thermally coupled packed bed reactor in which simultaneous production of ammonia and methyl ethyl ketone (MEK) takes place is simulated. The simulation results are presented in two co-current and counter-current flow modes. Based on this new configuration, the released heat from the ammonia synthesis reaction as an extremely exothermic reaction in the inner tube is employed to supply the required heat for the endothermic 2-butanol dehydrogenation reaction in the outer tube. On the other hand, MEK and hydrogen are produced by the dehydrogenation reaction of 2-butanol in the endothermic side, and the produced hydrogen is used to supply a part of the ammonia synthesis feed in the exothermic side. Thus, 30.72% and 31.88% of the required hydrogen for the ammonia synthesis are provided by the dehydrogenation reaction in the co-current and counter-current configurations, respectively. Also, according to the thermal coupling, the required cooler and furnace for the ammonia synthesis and 2-butanol dehydrogenation conventional plants are eliminated, respectively. As a result, operational costs, energy consumption and furnace emissions are considerably decreased. Finally, a sensitivity analysis and optimization are applied to study the effect of the main process parameters variation on the system performance and obtain the minimum hydrogen make-up flow rate, respectively.  相似文献   
9.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
10.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号