首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   10篇
  国内免费   20篇
环境安全   331篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   8篇
  2014年   19篇
  2013年   12篇
  2012年   19篇
  2011年   26篇
  2010年   23篇
  2009年   18篇
  2008年   13篇
  2007年   24篇
  2006年   15篇
  2005年   14篇
  2004年   9篇
  2003年   13篇
  2002年   17篇
  2001年   13篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
51.
• Lanthanum modified bentonite (LMB) can effectively absorb phosphorus (P). • Water treatment plant sludge (WTPS) capping is effective for controlling P release. •Aluminum-based P-inactivation agent (Al-PIA) is an efficient P control material. •The P adsorbed by WTPS and Al-PIA is mainly in the form of NAIP. We determined the effects of quartz sand (QS), water treatment plant sludge (WTPS), aluminum-based P-inactivation agent (Al-PIA), and lanthanum-modified bentonite (LMB) thin-layer capping on controlling phosphorus and nitrogen release from the sediment, using a static simulation experiment. The sediment in the experiment was sampled from Yundang Lagoon (Xiamen, Fujian Province, China), which is a eutrophic waterbody. The total phosphorus (TP), ammonium nitrogen (NH4+-N), and total organic carbon (TOC) levels in the overlying water were measured at regular intervals, and the changes of different P forms in WTPS, Al-PIA, and sediment of each system were analyzed before and after the test. The average TP reduction rates of LMB, Al-PIA, WTPS, and QS were 94.82, 92.14, 86.88, and 10.68%, respectively, when the release strength of sediment TP was 2.26–9.19 mg/(m2·d) and the capping strength of the materials was 2 kg/m2. Thin-layer capping of LMB, WTPS, and Al-PIA could effectively control P release from the sediment (P<0.05). However, thin-layer capping of LMB, Al-PIA, and QS did not significantly reduce the release of ammonium N and organic matter (P > 0.05). Based on our results, LMB, Al-PIA, and WTPS thin-layer capping promoted the migration and transformation of easily released P in sediment. The P adsorbed by WTPS and Al-PIA mainly occurred in the form of NAIP.  相似文献   
52.
A long-term monitoring program has been carried out since the early 1990s in the Mondego estuary, on Portugal's west coast, which is presently under heavy human pressure. In this shallow warm-temperate estuary, a significant macroalgal proliferation has been observed, which is a clear sign of nutrient enrichment. As a result of competition with algae, the extension of the seagrass meadows (mainly Zostera noltii) has been reduced. The present paper examined the applicability of a holistic Stochastic Dynamic Methodology (StDM) in predicting the tendencies of trophic key-components (macrophytes, macroalgae, benthic macroinvertebrate and wading birds) as a response to the changes in estuarine environmental conditions. The StDM is a sequential modelling process developed in order to predict the ecological status of changed ecosystems, from which management strategies can be designed. The data used in the dynamic model construction included true gradients of environmental changes and was sampled from January 1993 to September 1995 and from December 1998 to December 2005. The dynamic model developed was preceded by a conventional multivariate statistical procedure performed to discriminate the significant relationships between the selected ecological components. The model validation was based on independent data collected from January 1996 to January 1997 and from February 1999 to April 2000 for all the state variables considered. Overall, the simulation results are encouraging since they seem to demonstrate the StDM reliability in capturing the trophic dynamics of the studied estuary, by predicting the behavioural pattern for the most part of the components selected, with a focus on the Zostera noltii meadows recovery after the implementation of important management measures.  相似文献   
53.
太湖梅梁湾富营养化相关问题探讨   总被引:6,自引:0,他引:6  
太湖水体富营养化问题已严重威胁着太湖流域社会经济发展,特别是梅梁湾湖区尤为严重。以实测资料为基础,分析了太湖富营养化的环境影响因子,得出以下结论:磷为梅梁湾湖区主要的限制性因子;光照、水温为该区富营养化重要影响因素,但不是主要的限制性因子。CODMa与富营养化关系密切,但需进一步探讨其影响实质。  相似文献   
54.
Coastal waters have been significantly influenced by increased inputs of nutrients that have accompanied population growth in adjacent drainage basins. In Tampa Bay, Florida, USA, the population has quadrupled since 1950. By the late 1970s, eutrophic conditions including phytoplankton and macroalgal blooms and seagrass losses were evident. The focus of improving Tampa Bay is centered on obtaining sufficient water quality necessary for restoring seagrass habitat, estimated to have been 16,400 ha in 1950 but reduced to 8800 ha by 1982. To address these problems, targets for nutrient load reductions along with seagrass restoration goals were developed and actions were implemented to reach adopted targets. Empirical regression models were developed to determine relationships between chlorophyll a concentrations and light attenuation adequate for sustainable seagrass growth. Additional empirical relationships between nitrogen loading and chlorophyll a concentrations were developed to determine how Tampa Bay responds to changes in loads. Data show that when nitrogen load reduction and chlorophyll a targets are met, seagrass cover increases. After nitrogen load reductions and maintenance of chlorophyll a at target levels, seagrass acreage has increased 25% since 1982, although more than 5000 ha of seagrass still require recovery. The cooperation of scientists, managers, and decision makers participating in the Tampa Bay Estuary Program’s Nitrogen Management Strategy allows the Tampa Bay estuary to continue to show progress towards reversing many of the problems that once plagued its waters. These results also highlight the importance of a multi-entity watershed management process in maintaining progress towards science-based natural resource goals.  相似文献   
55.
The environmental degradation of lakes in China has become increasingly serious over the last 30 years and eutrophication resulting from enhanced nutrient inputs is considered a top threat. In this study, a quasi-mass balance method, net anthropogenic N inputs (NANI), was introduced to assess the human influence on N input into three typical Chinese lake basins. The resultant NANI exceeded 10 000 kg N km−2 year−1 for all three basins, and mineral fertilizers were generally the largest sources. However, rapid urbanization and shrinking agricultural production capability may significantly increase N inputs from food and feed imports. Higher percentages of NANI were observed to be exported at urban river outlets, suggesting the acceleration of NANI transfer to rivers by urbanization. Over the last decade, the N inputs have declined in the basins dominated by the fertilizer use but have increased in the basins dominated by the food and feed import. In the foreseeable future, urban areas may arise as new hotspots for nitrogen in China while fertilizer use may decline in importance in areas of high population density.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0638-8) contains supplementary material, which is available to authorized users.  相似文献   
56.
Hypoxia has occurred intermittently over the Holocene in the Baltic Sea, but the recent expansion from less than 10 000 km2 before 1950 to >60 000 km2 since 2000 is mainly caused by enhanced nutrient inputs from land and atmosphere. With worsening hypoxia, the role of sediments changes from nitrogen removal to nitrogen release as ammonium. At present, denitrification in the water column and sediments is equally important. Phosphorus is currently buried in sediments mainly in organic form, with an additional contribution of reduced Fe-phosphate minerals in the deep anoxic basins. Upon the transition to oxic conditions, a significant proportion of the organic phosphorus will be remineralized, with the phosphorus then being bound to iron oxides. This iron-oxide bound phosphorus is readily released to the water column upon the onset of hypoxia again. Important ecosystems services carried out by the benthic fauna, including biogeochemical feedback-loops and biomass production, are also lost with hypoxia. The results provide quantitative knowledge of nutrient release and recycling processes under various environmental conditions in support of decision support tools underlying the Baltic Sea Action Plan.  相似文献   
57.
Thevenon F  Adatte T  Wildi W  Poté J 《Chemosphere》2012,86(5):468-476
This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century.  相似文献   
58.
Eero Asmala  Laura Saikku 《Ambio》2010,39(2):126-135
Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.  相似文献   
59.
Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen.  相似文献   
60.
A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9 mg L−1) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ13C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ13C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ13C values of the DOC recovered in the reservoir (−28.5 ± 0.2‰; n = 22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ13C in algae = −30.1 ± 0.3‰; n = 2) being indistinguishable from the δ13C values of allochthonous DOC from inflowing rivers (−28.6 ± 0.1‰; n = 8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号