首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3830篇
  免费   1233篇
  国内免费   56篇
农业科学   5119篇
  2025年   83篇
  2024年   149篇
  2023年   128篇
  2022年   160篇
  2021年   169篇
  2020年   198篇
  2019年   188篇
  2018年   149篇
  2017年   196篇
  2016年   185篇
  2015年   189篇
  2014年   204篇
  2013年   227篇
  2012年   293篇
  2011年   272篇
  2010年   224篇
  2009年   201篇
  2008年   197篇
  2007年   290篇
  2006年   217篇
  2005年   171篇
  2004年   126篇
  2003年   89篇
  2002年   88篇
  2001年   87篇
  2000年   79篇
  1999年   52篇
  1998年   65篇
  1997年   65篇
  1996年   66篇
  1995年   45篇
  1994年   61篇
  1993年   42篇
  1992年   24篇
  1991年   23篇
  1990年   35篇
  1989年   21篇
  1988年   16篇
  1987年   17篇
  1986年   9篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1955年   1篇
排序方式: 共有5119条查询结果,搜索用时 23 毫秒
61.
    
Aggregate stability is a fundamental property influencing soil erodibility and hydraulic characteristics. Knowledge of soil components controlling aggregate stability is very important to soil structure conservation. The objective of this study, which was carried out in surface soils from central Greece, was to relate wet aggregate stability to selected soil properties, with emphasis on excessive free carbonate content. The wet‐sieving technique of air‐dried aggregates was used for structural stability evaluation, according to a test that calculates an instability index. The soils studied were developed on Tertiary marly parent material and ranged in calcium carbonate content from 5 to 641 g kg−1. From the texture analysis before and after removal of carbonates, it was concluded that carbonates mainly contributed to total silt and sand fractions, that is to the mechanical fractions which, as a rule, negatively affect aggregate stability. The results of the correlation analysis showed that aggregate stability was positively affected by aluminosilicate clay content, cation exchange capacity (CEC) and Al‐containing sesquioxides. Clay fraction from carbonates and total sand and silt negatively affected aggregate stability. CEC has been proved a very significant determinant of aggregate stability, which in a hyperbolic form relationship with instability index explained 78·9 per cent of aggregate stability variation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
62.
    
ABSTRACT

Field experiment was conducted to evaluate the effect of corn straw derived-biochar (700 °C) applied at 0 (control), 10 (B1), 20 (B2) and 30 t ha?1 (B3) on water stable aggregate (WSA), mean weight diameter (MWD), total organic carbon (TOC) and total nitrogen (TN) in WSA fractions of Albic soil. Compared with control, WSA in > 2 mm fraction increased, by 40.8% and 51.5% (0–10 cm depth) in B1 and B3, respectively. B1, B2 and B3 (10–20 cm depth) increased by 55.2%, 69.6% and 62.4%, respectively. MWD increased by 34.4%, 21.6%, and 17.6% with B3 at 0–10 cm, 10–20 cm and 20–30 cm depths, respectively. TOC in the > 2 mm fraction increased by 28.6%, 22.1%, and 23.2% (0–10 cm depth) in B1, B2, and B3, respectively, TN in 2–0.5 mm fractions increased by 32.4%, 23.4% and 33.6% (0–10 cm depth); and in the 0.25–0.05 mm fractions increased by 14.8%, 19.8% and 18.7% (10–20 cm depth), in B1, B2 and B3, respectively. Our findings suggest biochar application at 30 t ha?1 could improve structural stability and sequestration of TOC and TN in Albic soils.  相似文献   
63.
    
ABSTRACT

Biochar has not been adequately used by farmers to improve the clay textured soil productivities in the world. Therefore, the objective of this study is to investigate the effect of the co-application of biochar with different rates of phosphorus (P) fertilizer on selected soil physical properties and wheat yield on clay textured soil over two growth seasons. Biochar treatments occupied the main plots at a rate of 0.0 and 10 t ha?1, while the sub-plots were devoted to phosphorus rates at rates of 0%, 50%, 100%, and 150% of recommended P fertilizers. Biochar (10 t ha?1) and P at different rates decreased soil bulk density significantly. Meanwhile, it increased aggregate stability, saturated hydraulic conductivity and soil water retention significantly at (p < .05), and it improved the grain yield of wheat. More grain yields in the soil treated with biochar than untreated soil under all P application rates for both years were probably caused partially by more nutrients (N, P, and K) were applied from biochar itself. Grain yield of wheat in the soil-amended biochar and P did not increase significantly between the application at 50%, 100% and 150% P. The results of this study indicate that phosphorus blends with biochar can be used to decrease the bulk density of clay textured soils and to improve crop production in these soils.  相似文献   
64.
    
The importance of soil aggregation in determining the dynamics of soil organic carbon (SOC) during erosion, transportation and deposition is poorly understood. Particularly, we do not know how aggregation contributes to the often-observed accumulation of SOC at depositional sites. Our objective was to assess how aggregation affects SOC stabilization in comparison to interactions of SOC with minerals. We determined and compared aggregate size distributions, SOC distribution in density fractions, and lignin-derived phenols from aggregated soil samples at both eroding and depositional sites. The stabilization effect of aggregation was quantified by comparing mineralization from intact and crushed macro-aggregates. Deposition of eroded soil material resulted in carbon (C) enrichment throughout the soil profile. Both macro-aggregate associated SOC and C associated with minerals (heavy fraction) increased in their importance from the eroding to the depositional site. In the uppermost topsoil (0–5 cm), SOC mineralization from intact aggregates was larger at the depositional site than at the eroding site, reflecting the large input of labile organic matter (plant residues) promoting aggregation. Contrastingly, in the subsoil, mineralization rates were lower at the depositional site because of effective stabilization by interactions with soil minerals. Aggregate crushing increased SOC mineralization by 10–80% at the eroding site, but not at the depositional site. The content of lignin-derived phenols did not differ between eroding and depositional sites in the topsoil (24.6–30.9 mg per g C) but was larger in the subsoil of the eroding site, which was accompanied by higher lignin oxidation. Lignin data indicated minor effects of soil erosion and deposition on the composition of SOC. We conclude that SOC is better protected in aggregates at the eroding than at the depositional site. During transport disaggregation and consequently SOC mineralization took place, while at the depositional site re-aggregation occurred mainly in the form of macro-aggregates. However, this macro-aggregation did not result in a direct stabilization of SOC. We propose that the occlusion of C inside aggregates serves as a pathway for the eroded C to be later stabilized by organo-mineral interaction.  相似文献   
65.
    
The research was carried out to determine the effect of basin‐based conservation agriculture (CA) on selected soil quality parameters. Paired plots (0.01 ha) of CA and conventional tillage based on the animal‐drawn mouldboard plough (CONV) were established between 2004 and 2007 on farm fields on soils with either low (12–18% – sandy loams and sandy clay loams) or high clay levels (>18–46% – sandy clays and clays) as part of an ongoing project promoting CA in six districts in the smallholder farming areas of Zimbabwe. We hypothesized that CA would improve soil organic carbon (SOC), bulk density, aggregate stability, soil moisture retention and infiltration rate. Soil samples for SOC and aggregate stability were taken from 0 to 15 cm depth and for bulk density and soil moisture retention from 0 to 5, 5 to 10 and 10 to 15 cm depths in 2011 from maize plots. Larger SOC contents, SOC stocks and improved aggregate stability, decreased bulk density, increased pore volume and moisture retention were observed in CA treatments. Results were consistent with the hypothesis, and we conclude that CA improves soil quality under smallholder farming. Benefits were, however, greater in high clay soils, which is relevant to the targeting of practices on smallholder farming areas of sub‐Saharan Africa.  相似文献   
66.
    
Enzymatic activity (EA) was explored as a possible tool for composting characterization. Three composts (yard wastes, cotton wastes and a mixture of the two) were sampled during different phases of the process and divided in two fractions. The first was immediately analysed for microbial biomass C (BC) and EAs (β-glucosidase, arylsulphatase, acid and alkaline phosphatase). The second fraction was air-dried prior to analysis for the same EAs and for organic C (CORG), total N (NTOT), dissolved organic C (DOC), extractable C (CE) and humic-like C (CH).BC decreased throughout the composting period (149 days), whereas EA in moist fractions stabilized between 50 (β-glucosidase, alkaline phosphatase) and 90 (arylsulphatase, acid phosphatase) days of composting.EA was always reduced by air‐drying (β-glucosidase: 40-80%; arylsulphatase: 10-50%; acid phosphatase: 10-70%; alkaline phosphatase: 50-90%), but this effect was less prominent as composting proceeded, especially for β-glucosidase and alkaline phosphatase.EA in air-dried samples displayed the same trend as in moist ones, except that there was a marked difference (47-66%) between initial and final activities of all four enzymes.EAs in air‐dried compost and content of humic-like substances showed a similar trend: a marked increase in the first 90 days of the process and no significant variations afterwards. This suggests that the formation of humic-enzymatic complexes has taken place and indicates that this process occurs almost totally during the first stage of composting.EA steadiness in air-dried samples occurred concurrently with the achievement of compost stability, as indicated by the conventional indexes (i.e. CH, CORG/NTOT). Therefore, the development of a stable enzyme activity in air-dried compost could represent a simple measure of compost stabilization in routine analysis of composting process.  相似文献   
67.
68.
    
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   
69.
通过对所研究的系统作非奇异变换,构造具体的稳定泛函,并建立这类泛函微分方程系统的稳定性的判别定理。  相似文献   
70.
The effects of tillage on soil organic carbon content, carbohydrate content, monosaccharide composition, aggregate stability, compactibility and plasticity were investigated in a field experiment on a gleysol and on a cambisol under winter barley in South-East Scotland. Two long-term treatments (direct drilling and conventional mouldboard ploughing for 22 years) were compared with short-term direct drilling and broadcast sowing plus rotavation for 5 years. Carbohydrate released sequentially to cold water, hot water, 1.0 M HCl and 0.5 M NaOH was determined after hydrolysis as reducing sugar equivalent to glucose in both fresh and air-dried samples. All other measurements were made on dry soils only. About 3% of the soluble carbohydrate was extracted by cold water, 10% by hot water, 12% by HCl and 75% by NaOH from both the dry and fresh soils. The total reducing sugars of the fractions were proportional to the total organic carbon determined by dichromate oxidation or C analysis. Organic carbon and carbohydrates were concentrated near the surface of the direct drilled soil, but were more uniformly distributed with depth in the ploughed soil. The surface soil under direct drilling was more stable, less compactible and had greater plasticity limits than under ploughing. However, particle size distributions were unaffected by tillage so that differences in soil properties were attributed to differences in the quantity and quality of organic matter. Differences in compactibility, structural stability and plasticity limits between depths and tillage treatments correlated with total carbon and with total carbohydrates. The hot water extractable carbohydrate fraction correlated best with aggregate stability and the NaOH fraction correlated best with compactibility and plastic limit. Both fractions were greatest in the long-term direct drilled soil. The hot water fraction had a galactose plus mannose over arabinose plus xylose ratio of 1.0–1.6 in comparison to 0.4–0.7 in the NaOH fraction indicating that the microbial contribution within the hot water-soluble fraction was the greater. The hot-water fraction was likely to contain more exocellular microbial polysaccharides involved in the stabilizing of soil aggregates. The hot-water and NaOH carbohydrate fractions may be good indicators of soil organic matter quality relevant to the preservation of good soil physical conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号