首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13560篇
  免费   835篇
  国内免费   1768篇
农业科学   16163篇
  2024年   100篇
  2023年   385篇
  2022年   630篇
  2021年   663篇
  2020年   699篇
  2019年   725篇
  2018年   616篇
  2017年   847篇
  2016年   953篇
  2015年   706篇
  2014年   725篇
  2013年   1222篇
  2012年   1219篇
  2011年   958篇
  2010年   751篇
  2009年   709篇
  2008年   536篇
  2007年   612篇
  2006年   554篇
  2005年   428篇
  2004年   323篇
  2003年   252篇
  2002年   196篇
  2001年   168篇
  2000年   143篇
  1999年   130篇
  1998年   107篇
  1997年   102篇
  1996年   102篇
  1995年   112篇
  1994年   65篇
  1993年   84篇
  1992年   64篇
  1991年   58篇
  1990年   48篇
  1989年   48篇
  1988年   39篇
  1987年   26篇
  1986年   20篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1962年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
彭州市丹景山镇典型农作物输出系数研究   总被引:1,自引:0,他引:1  
农业非点源污染具有随机性大、分布范围广、危害性大等特点,已成为重要的环境污染方式。根据现场实测,分析了四川省彭州市丹景山镇不同作物田的总氮、总磷输出系数,探讨了不同作物及不同典型水文年输出系数形成差异的原因,完善了输出系数模型,为控制丹景山镇农业氮素、磷素的输出提供建议。  相似文献   
102.
Abstract

An ammonia electrode was evaluated as a means of determining ammonium concentration in semi‐micro Kjeldahl digests of plant samples. Results of the ammonia electrode determination agreed closely with distillation and titration results. Advantages of the electrode method include speed, precision, increased safety, simplicity and the fact that only a small aliquot of the digest is used.  相似文献   
103.
The effects of lower field rate (LFR), field rate (FR), and higher field rate (HFR) applications of carbofuran on ammonium (NH4)-nitrogen (N), nitrate (NO3)-N, available phosphorus (P), and available potassium (K) contents in natural soils and those amended with inorganic fertilizers and vermicompost on the growth of tomato plants were studied. The NH4-N, NO3-N, available P, and available K contents increased up to FR but the most significant increase in was observed at LFR of carbofuran application. At HFR there was a significant reduction in nutrient availability. With passage of time all these parameters increase up to 30 days; thereafter, a decrease was observed up to the end of the experiment in both unamended and amended soils. The greater plant growth was observed at LFR of carbofuran application and at HFR the plants exhibited phytotoxicity in the form of marginal leaf scorching in both systems. The morphological growth parameters of tomato plants were positively correlated with nutrients availability.  相似文献   
104.
猪尿氮排放量为总氮排放量的60%~70%,而尿素是尿液中的主要含氮物,其合成速率在很大程度上决定着尿氮以及总氮的排放量。因此,降低猪肝脏尿素合成速率是减少氮排放量的根本途径。本文首先介绍了当前猪氮减排常用的营养调控技术,然后分别就肝脏尿素合成的直接前体物(氨)与间接前体物(如甘氨酸和丙氨酸)以及氨基酸代谢燃料功能替代机制进行论述,在此基础上提出猪氨基酸代谢节俭机制新假说,即促进丙酮酸/葡萄糖等物质的供能效率,以降低谷氨酸等氨基酸的代谢速率,从而达到减少门静脉尿素前体物净流量、肝脏尿素合成以及尿氮排放量的目的。  相似文献   
105.
不同氮肥用量对水稻黄华占产量及主要经济性状的影响   总被引:1,自引:0,他引:1  
为充分发挥水稻黄华占高产高效潜力,本试验研究了不同氮肥用量对黄华占产量及产量构成因素的影响,结果表明:黄华占纯氮用量以180kg/hm2为宜,在土壤肥力水平较高地区种植,纯氮用量应酌减,但一般不宜低于150kg/hm2,且经济效益较高。  相似文献   
106.
《Journal of plant nutrition》2013,36(12):2453-2468
Abstract

The top three leaves play important roles in biomass production and grain yield of rice (Oryza sativa L.) crop since the three leaves not only assimilate majority of carbon for grain filling during ripening phase, but also provide large proportion of remobilized‐nitrogen (N) for grain development during their senescence. The objectives of this study were to (a) compare senescence of the top three leaves and (b) compare the changes in N, chlorophyll, and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) contents of the top three leaves after their full expansion in field‐grown rice plants. When the basis of comparison among the top three leaves was plant age in terms of days after transplanting (DAT), senescence generally started earliest in ?3rd leaf, intermediate in ?2nd leaf, and latest in flag leaf. If the basis of comparison among the top three leaves was leaf age in terms of days after full leaf expansion (DAFE), it was not clear which leaf senesced earlier. Senescence rate was generally greatest in flag leaf, intermediate in ?2nd leaf, and smallest in ?3rd leaf. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content declined earlier, and at a faster rate than N and chlorophyll contents during the senescence of all top three leaves. Correlation analysis indicated a close relationship between N and chlorophyll contents. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content correlated with N content better than with chlorophyll content. The suitability of N, chlorophyll, and Rubisco contents for quantifying the leaf senescence of field‐grown rice plants is discussed.  相似文献   
107.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   
108.
Separation of livestock slurries followed by reverse osmosis yields mineral concentrates (MCs) in which almost all nitrogen (N) is ammonium (NH4)-N. The ability of MCs to substitute calcium ammonium nitrate (CAN), a common conventional mineral N fertilizer, was tested in two trials on a silty loam soil (ware potatoes, 2009 and 2010) and four trials on sandy soils (starch potatoes, 2009 and 2010; silage maize in 2010 and 2011). The N fertilizer replacement value (NFRV) of spring-injected MCs ranged from 72 to 84%, slightly less than their share of ammonium-N (90–100%). The fate of N that was apparently unavailable to crops was not fully disclosed, but there were indications that ammonia loss may have played a role.  相似文献   
109.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   
110.
Nitrogen (N) is critical for micronutrient biofortification in wheat grain and is essential for a series of nitrogenous compounds biosynthesis. This study aims to assess the role of improved N supply in iron (Fe) and zinc (Zn) enrichment and expression of genes related to Zn and Fe chelation and transport in winter wheat. Potting and hydroponic culture experiments were conducted to study the effect of increasing N application on Zn and Fe uptake and translocation from roots to leaves and the temporal and spatial gene expression profiles of the NICOTIANAMINE SYNTHASE (NAS) genes in wheat. Plants were grown with low, medium and high N supply levels. The results showed that higher N application increased Fe and Zn content in leaves, and decreased Fe and Zn content in root compared with the lower N supply. High N application also increased the distribution of Fe and Zn from roots to leaves. Expression analysis showed that increased N application resulted in up-regulation of two wheat NAS genes, TaNAS1 and TaNAS2. Highly positive response between NAS genes and increasing N application indicated that abundance nicotianamine (NA) resulted from highly expressed NAS genes might involve in the chelation of Fe and Zn in the phloem and favor Fe and Zn uptake and accumulation in wheat leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号