全文获取类型
收费全文 | 15051篇 |
免费 | 2864篇 |
国内免费 | 1581篇 |
学科分类
数理化 | 19496篇 |
出版年
2024年 | 86篇 |
2023年 | 250篇 |
2022年 | 308篇 |
2021年 | 347篇 |
2020年 | 254篇 |
2019年 | 251篇 |
2018年 | 167篇 |
2017年 | 244篇 |
2016年 | 298篇 |
2015年 | 368篇 |
2014年 | 833篇 |
2013年 | 657篇 |
2012年 | 854篇 |
2011年 | 1104篇 |
2010年 | 997篇 |
2009年 | 946篇 |
2008年 | 989篇 |
2007年 | 856篇 |
2006年 | 828篇 |
2005年 | 989篇 |
2004年 | 898篇 |
2003年 | 851篇 |
2002年 | 690篇 |
2001年 | 699篇 |
2000年 | 662篇 |
1999年 | 548篇 |
1998年 | 506篇 |
1997年 | 461篇 |
1996年 | 448篇 |
1995年 | 400篇 |
1994年 | 349篇 |
1993年 | 292篇 |
1992年 | 284篇 |
1991年 | 273篇 |
1990年 | 232篇 |
1989年 | 188篇 |
1988年 | 32篇 |
1987年 | 26篇 |
1986年 | 14篇 |
1985年 | 6篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1959年 | 2篇 |
1951年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
KdV方程对称李代数的伴随表示及其killing型 总被引:1,自引:0,他引:1
本文利用群的开拓理论得出了 Kd V方程对称李代数的伴随表示及其 Killing型 . 相似文献
102.
本文考虑了带随机移民的超布朗运动占位时过程,其移民速度由另外一超布朗运动的轨道所决定.在维数d≥7时,得到它的大偏差原理. 相似文献
103.
本文讨论奇异扰动的拟线性椭圆型方程-ε△pu(x)=f(u(x)),u(x)≥0,x∈Ω;u=0,x∈Ω在Dirichlet边值条件下极小能量解的存在性和结构.其中ε>0是小参数,p>2,△pu=div(|Du|p-2Du),f(s)=sq-sp-1,p-1<q<Np/N-p-1.Ω RN(N≥2)是有界光滑区域.当ε→0时,方程存在一个极小能量解,应用移动平面方法可以证明此解在凸区域上会变成一个尖峰解. 相似文献
104.
线性泛函方程解的振动性的新结果 总被引:1,自引:0,他引:1
本文研究高阶泛函方程x(g(t))=P(t)x(t)+Q1(t)x(g2(t))+…+Qk(t)x(gk+1(t))解的振动性,得到了一些新的振动条件.改进和推广了已有结果. 相似文献
105.
许兴业 《数学物理学报(A辑)》2003,23(2):175-182
该文以Schauder-Tychonoff不动点定理为工具,建立了一类平面上带奇异性的非线性 多重调和方程的正的径向对称整体解的存在性定理,并给出了解的有关性质,所得的结果丰 富和发展文[1][4]的结果。 相似文献
106.
We present a kind of solutions of D-equations in terms of what we have called a D-pair in this paper. Some properties of dimodules associated with D-pairs are discussed as well. 相似文献
107.
XiaCui 《计算数学(英文版)》2003,21(2):125-134
AD(Alternating direction)Galerkin schemes for d-dimensional nonlinear pseudo-hyperbolic equations are studied.By using patch approximation technique,AD procedure is realized,and calculation,work is simplified.By using Galerkin approach,highly computational accuracy is kept.By using various priori estimate techniques for differential equations,difficulty coming form non-linearity is treated,and optimal H^1 and L^2 convergence prop-erties are demonstrated.Moreover,although all the existed AD Galerkin schemes using patch approximation are limited to have only one order accuracy in time increment,yet the schemes formulated in this paper have second order accuracy in it.This implies an essential advancement in AD Galerkin aualysis. 相似文献
108.
TorstenLinB 《计算数学(英文版)》2003,21(4):401-410
We consider a singularly perturbed semilinear convection-diffusion problem with a boundary layer of attractive turning-point type. It is shown that its solution can be decomposed into a regular solution component and a layer component. This decomposi-tion is used to analyse the convergence of an upwinded finite difference scheme on Shishkin meshes. 相似文献
109.
LuisVazauez 《计算数学(英文版)》2003,21(4):491-494
We present a generalization of the linear one-dimensional diffusion equation by com-bining the fractional derivatives and the internal degrees of freedom. The solutions areconstructed from those of the scalar fractional diffusion equation. We analyze the in-terpolation between the standard diffusion and wave equations defined by the fractionalderivatives. Our main result is that we can define a diffusion process depending on theinternal degrees of freedom associated to the system. 相似文献
110.
THE COUPLING OF NATURAL BOUNDARY ELEMENT AND FINITE ELEMENT METHOD FOR 2D HYPERBOLIC EQUATIONS 总被引:2,自引:0,他引:2
De-haoYu Qi-kuiDu 《计算数学(英文版)》2003,21(5):585-594
In this paper, we investigate the coupling of natural boundary element and finite element methods of exterior initial boundary value problems for hyperbolic equations. The governing equation is first discretized in time, leading to a time-step scheme, where an exterior elliptic problem has to be solved in each time step. Second, a circular artificial boundary FR consisting of a circle of radius R is introduced, the original problem in an unbounded domain is transformed into the nonlocal boundary value problem in abounded subdomain. And the natural integral equation and the Poisson integral formula are obtained in the infinite domainΩ2 outside circle of radius R. The coupled variational formulation is given. Only the function itself, not its normal derivative at artificial boundary ΓR, appears in the variational equation, so that the unknown numbers are reducedand the boundary element stiffness matrix has a few different elements. Such a coupled method is superior to the one based on direct boundary element method. This paper discusses finite element discretization for variational problem and its corresponding numerical technique, and the convergence for the numerical solutions. Finally, the numerical example is presented to illustrate feasibility and efficiency of this method. 相似文献