首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4261篇
  免费   367篇
  国内免费   112篇
医药卫生   4740篇
  2024年   24篇
  2023年   137篇
  2022年   235篇
  2021年   268篇
  2020年   214篇
  2019年   224篇
  2018年   209篇
  2017年   176篇
  2016年   148篇
  2015年   216篇
  2014年   268篇
  2013年   440篇
  2012年   245篇
  2011年   251篇
  2010年   162篇
  2009年   205篇
  2008年   190篇
  2007年   153篇
  2006年   168篇
  2005年   129篇
  2004年   112篇
  2003年   91篇
  2002年   83篇
  2001年   67篇
  2000年   69篇
  1999年   28篇
  1998年   42篇
  1997年   30篇
  1996年   30篇
  1995年   21篇
  1994年   18篇
  1993年   11篇
  1992年   7篇
  1991年   9篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   11篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有4740条查询结果,搜索用时 15 毫秒
61.
采用ISSR和SRAP技术评价浙南忍冬属药材遗传多样性   总被引:1,自引:0,他引:1  
目的 评价浙南忍冬属LoniceraL.药材遗传多样性.方法 采用ISSR和SRAP分子标记技术检测5种忍冬属药材遗传多样性,NTSYS软件处理数据,UPGMA构建聚类图;Mantel检测法对2种标记进行相关性检验;用引物分辨力(RP)、多态性条带比率(PPB)等参数对标记效率进行评价.结果 16条ISSR引物和22对SRAP引物分别扩增出232、215条带;UPGMA可将5种忍冬属药材聚为2大类,一类为金银花基原植物,另一类则为山银花基原植物,两种标记技术相关系数(r)为0.970 3.结论 ISSR和SRAP均可有效地分析忍冬属药材资源的遗传多样性,且ISSR标记技术优于SRAP.  相似文献   
62.
三籽两型豆生长发育特性及栽培技术研究   总被引:2,自引:0,他引:2  
目的 :探明两型豆的种子萌发、植株生长发育特性及主要栽培技术措施 ,为人工栽培提供依据。方法 :采用室内种子萌发、田间播种观察、光照处理及小区栽培方法。结果 :试验表明地上种子存在硬实现象 ,地下、地上种子播种都能正常出苗、开花、并都结出地上、地下正常发育的种子 ;在河北东部地区 5月初播种 ,九月初开花 ,10月下旬收获 ;两型豆的幼苗属于子叶不出土类型 ;地下种子的发育来自于子叶节部位着生的地下茎及分枝 ;两型豆是耐阴、怕高温的短日照植物 ,短日处理可大幅度提早开花、结实 ;栽培时注意种子处理、遮光、充足土壤水分供应及搭架等措施。结论 :初步明确了三籽两型豆地上、地下种子萌发、植株生长发育等特性和相关栽培技术措施。  相似文献   
63.
药用植物GAP生产的病害绿色防控发展策略   总被引:2,自引:0,他引:2  
药用植物的GAP生产要求其栽培过程中病害的绿色防控.作者总结了病害农业防治和生物防治的研究成果,结合药用植物的特殊性提出药用植物病害绿色防控的概念,指出药用植物病害绿色防控要结合农业防治、现代植病研究方法、生物防治和科学用药协同进行,并作了展望,以期为药用植物GAP生产中病害绿色防控研究提供参考.  相似文献   
64.
摘要:目的 采用单菌多次级代谢产物(OSMAC)策略对1株采自南海深海2 801 m沉积环境的白黄笋顶孢霉属真菌Acrostalagmus luteoalbus SCSIO F457进行化学多样性的初步研究。方法 通过在不同培养基、不同pH与不同盐度条件下对菌株进行培养调控并筛选2种适宜发酵条件进行小规模发酵。采用硅胶柱层析、葡聚糖凝胶层析、半制备高效液相等色谱学方法对发酵产物进行化学分离,利用NMR、MS等波谱学技术并结合文献鉴定化合物结构,并对化合物进行初步抗氧化和抗菌活性测试。结果 从菌株SCSIO F457的发酵产物中共新增分离鉴定11个单体化合物,包括paulownin(1)、cyclo(L-Phe-L-Pro)(2)、cyclo(L-Tyr-L-Pro)(3)、cyclo(L-Val-L-Pro)(4)、cyclo(D-Ile-L-Pro)(5)、cyclo(D-Leu-L-Pro)(6)、1-methyoxy-4-(2-hydroxy)ethylbenzene(7)、2-(4-hydroxyphenyl)-ethanol(8)、1-phenylbutane-2,3-diol(9)、3-methoxy-2-methyl-4H-pyran-4-one(10)及3-(hydroxy-acetyl)-1H-indole(11),化合物7表现出较弱的1,1-二苯基-2-苦基肼(1,1-Diphenyl-2-picryl-hydrazyl, DPPH)自由基清除活性。  相似文献   
65.
66.
目的:探讨重症婴幼儿龋患儿口腔念珠菌与菌群的关系.方法:选择2018年3月-2019年6月北京大学深圳医院治疗的重症婴幼儿龋患儿42例作为实验组,另选择来院进行口腔检查的无龋儿童40例作为对照组.分别采集各组患儿唾液、菌斑标本,进行微生物培养,将实验组组内分为白色念珠菌阴性、阳性患儿.通过高通量lllumina测序平台...  相似文献   
67.
解放军第463医院以科学发展观为指导,坚持文化建院,探索创建了具有军队医院特色的政治、战斗、创新、管理、服务等文化,形成了一套文化建院战略思路,医院全面建设得到了快速提升。  相似文献   
68.
鲍志野  刘浩 《器官移植》2022,13(4):469-474
肝移植术后会发生多种近期以及远期并发症。在术后早期,由于多重耐药菌的产生很容易导致各种感染,其中之一表现为肠道菌群失调。在过去的十年中,一系列研究发现肠道菌群在维持肠道稳态方面具有重要功能。肠道菌群通过多种途径与其他器官相互影响,其中肠肝轴是最关键的体内微环境调节通道之一。肠道菌群在数量和成分上的改变均能导致肠道菌群失调。无论在局部还是全身系统,肠道菌群与免疫系统都存在广泛的交互作用。本文着重探讨肝移植术后肠道菌群失调发生的危险因素、肠道菌群失调对肝移植受者的影响以及相关的治疗方案。  相似文献   
69.
Biodiversity loss poses a major threat to ecosystem function, which has already been severely impacted by global late-Quaternary defaunation. The loss of mammalian megafauna from many insular systems has rendered reptiles into key modulators of many ecosystem services, such as seed dispersal and pollination. How late-Quaternary extinction events impacted reptile functional diversity remains unclear but can provide critical guidance on traits that render reptiles vulnerable to extinction, as well as anthropogenic, environmental, and evolutionary histories that may promote stability and resilience. This study reconstructs the trajectory of functional diversity change in the Caribbean reptile fauna, a speciose biota distributed over a diverse set of islands with heterogeneous histories of human habitation and exploitation. Human-induced Quaternary extinctions have completely removed key functional entities (FEs)—groupings of species with similar traits that are expected to provide similar ecosystem services—from the region, but functional redundancy on large islands served as a buffer to major functional diversity loss. Small islands, on the other hand, lose up to 67% of their native FEs with only a few exceptions, underscoring the importance of a place’s anthropogenic history in shaping present-day biodiversity. While functional redundancy has shielded ecosystems from significant functional diversity loss in the past, it is being eroded and not replenished by species introductions, leaving many native FEs and the communities that they support vulnerable to extinction and functional collapse. This research provides critical data on long-term functional diversity loss for a taxonomic group whose contributions to ecosystem function are understudied and undervalued.

Biodiversity loss is one of the biggest challenges facing humanity today, threatening many known and unknown ecosystem services that we depend upon, such as food production, pest control, and nutrient cycling (1). There is an urgent need to quantify recent biodiversity loss, characterize existing biodiversity, and determine how species and ecosystems will be impacted by ongoing and future global change. Species richness has been the principal metric for measuring biodiversity, but species richness does not consider the functional capabilities of species within an ecosystem, which may be a better proxy for ecosystem health. Two ecosystems with the same species richness may have very different levels of functional diversity and support disparate ecosystem services, rendering one ecosystem stable, whereas the other could be on the brink of collapse. By emphasizing function over species, trait-based approaches allow for studies of biodiversity to occur over temporal and spatial scales where there is species turnover but continuity in functional traits, and functional diversity studies may draw attention to important organisms that are often overlooked in species-based approaches.Reptiles are one such group that play important, albeit understudied, roles in ecosystem function, including seed dispersal, pollination, ecosystem engineering (24), and nutrient cycling (5). Whereas mammals and birds are widely recognized as important pollinators and seed dispersers, turtles and lizards also contribute to these services. Seed dispersal services provided by tortoises are well documented, as are giant tortoise-plant mutualisms in insular settings (6). Like giant tortoises, most lizards pass intact seeds, and experimental studies show a high rate of enhanced seed germination (25%) after gut passage, a number comparable to studies in birds, nonvolant mammals, and bats (7). According to (7), roughly 7% of lizards incorporate fleshy fruits into their diet, although this number may be an underestimate due to limited dietary studies, limited reporting on diet components, and prevailing narratives that lizards are largely (and often exclusively) carnivorous.Compared to other terrestrial vertebrates, reptiles lack comprehensive studies of functional diversity and functional diversity loss, which would be helpful in determining the role that reptiles have played in ecosystems past and present. Given widespread Pleistocene extinctions of mammalian megafauna that are often associated with the aforementioned ecosystem services, extant reptiles play an outsized role in modulating ecosystems. Megafaunal extinctions have left many plants involved in vertebrate-plant mutualisms widowed, though the extent to which megafaunal extinctions have led to extinction cascades in plant communities has not been fully quantified because plant-reptile mutualisms have not been adequately explored. A recent study found that reptile species richness was an important predictor for the distribution of zoochoric plants in the Caribbean (8). Globally, at least 1.1% of all angiosperm species are at risk for losing their vertebrate mutualist partners, and in insular settings like the Caribbean, the risk is even higher (9). Studies dating back to the Paleogene show large-bodied reptiles occupying trophic space traditionally associated with mammals (10), and in many insular systems, particularly oceanic islands like the Galapagos, reptiles have always been the largest native herbivores. The cascading effects of reptile extinctions go well beyond that of plant-reptile mutualisms, however, and other species such as scavengers and predators were also likely impacted by these losses (11).Quaternary reptile extinctions are thought of as less extensive than extinctions in other taxonomic groups, and while many species did persist through the Pleistocene-Holocene transition, emerging datasets indicate nonrandom and at times extensive biodiversity loss (1214). Several challenges hinder the long-term quantification of biodiversity loss in reptiles. Reptile biodiversity peaks in the tropics, which are more inhospitable to fossil preservation than temperate regions (15). But regardless of geographic focus, research programs in Quaternary vertebrate paleontology have historically emphasized mammals and large-bodied organisms; at worst this has resulted in excavation and sediment screening processes that bias results toward larger fossils and particular taxa, and at best nonmammalian taxa are put aside for future study by specialists.The Caribbean serves as an exceptional system to query reptile functional diversity through time. A wealth of zooarchaeological and paleontological data exists with which researchers have characterized ancient biodiversity, extinction patterns, and species introductions throughout the Bahamas, Greater Antilles, and Lesser Antilles. It is also an epicenter for ecological, behavioral, and evolutionary biology studies on extant reptiles. Detailed reptile occurrence data exists for many of the islands (16), and decades of natural history research has yielded extensive trait data for extant taxa (17). The many islands of the Caribbean also serve as natural replicates to test hypotheses about the relationship between island area and functional diversity, and the heterogeneous, long-term history of humans across the landscape provides critical information on the role that humans have played in modulating functional diversity over long time scales and different land-use strategies.Here, Caribbean reptile communities are disaggregated into their ancient, extant native, and modern (extant native plus introduced) components to answer the question: how has functional diversity changed over the Quaternary? Functional entities (FEs), which are multivariate groups of species that share the same trait values, are especially useful for quantifying functional diversity in species-rich systems like the Caribbean reptile fauna. Large FEs indicate that many species within an ecosystem share a suite of functional traits, meaning that they might fill similar ecological roles. It is expected that FE redundancy, the mean number of species per FE, and FE richness, the number of FEs within an assemblage, will be higher on large, species-rich islands because on large islands in situ diversification plays a larger role in building species richness than colonization, and closely related species are likely to have similar functional traits. Additionally, functional diversity, measured as FE richness and functional richness (the proportion of functional trait space that an assemblage occupies), is hypothesized to decrease over the Quaternary. To date, the extent to which Quaternary extinction and extirpation events have led to FE loss remains unknown, although functional redundancy may buffer ecosystems from the detrimental impacts of extinction, and large reserves of functional redundancy may facilitate an ecosystem’s adaptive capabilities. Additionally, species introductions might restore FE richness and functional richness to prehistoric levels or shift the functional trait space entirely (18). Through quantifying functional diversity through time, the interplay of island size, anthropogenic impact, and species introductions is investigated, and features that may promote community stability and resiliency—as well as traits that are most vulnerable to impending changes—are identified.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号