首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44791篇
  免费   3431篇
  国内免费   5495篇
工业技术   53717篇
  2024年   121篇
  2023年   669篇
  2022年   876篇
  2021年   1303篇
  2020年   1336篇
  2019年   1005篇
  2018年   944篇
  2017年   1151篇
  2016年   1422篇
  2015年   1536篇
  2014年   3949篇
  2013年   2712篇
  2012年   3291篇
  2011年   3494篇
  2010年   2935篇
  2009年   3070篇
  2008年   3021篇
  2007年   3582篇
  2006年   3225篇
  2005年   2902篇
  2004年   2537篇
  2003年   1921篇
  2002年   1394篇
  2001年   1082篇
  2000年   911篇
  1999年   719篇
  1998年   502篇
  1997年   427篇
  1996年   350篇
  1995年   291篇
  1994年   223篇
  1993年   178篇
  1992年   153篇
  1991年   86篇
  1990年   70篇
  1989年   56篇
  1988年   46篇
  1987年   29篇
  1986年   19篇
  1985年   24篇
  1984年   32篇
  1983年   21篇
  1982年   15篇
  1981年   11篇
  1980年   15篇
  1979年   9篇
  1961年   4篇
  1958年   4篇
  1957年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
The extracellular matrix (ECM) is a macromolecular network that can provide biochemical and structural support for cell adhesion and formation. It regulates cell behavior by influencing biochemical and physical cues. It is a dynamic structure whose components are modified, degraded, or deposited during connective tissue development, giving tissues strength and structural integrity. The physical properties of the natural ECM environment control the design of naturally or synthetically derived biomaterials to guide cell function in tissue engineering. Tissue engineering is an important field that explores physical cues of the ECM to produce new viable tissue for medical applications, such as in organ transplant and organ recovery. Understanding how the ECM exerts physical effects on cell behavior, when cells are seeded in synthetic ECM scaffolds, is of utmost importance. Herein we review recent findings in this area that report on cell behaviors in a variety of ECMs with different physical properties, i.e., topology, geometry, dimensionality, stiffness, and tension.  相似文献   
32.
In this research, a bimodal nanoporous Baghdadite (NB) (Ca3ZrSi2O9) was prepared by a modified sol-gel method using P123 as a surfactant. The effects of P123's contents on the structural and textural properties as well as the drug delivery behavior of NB were assessed in vitro. The usage of P123 offered a new route for the synthesis of NB. The synthesized NB samples with different amounts of P123 were studied through X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), N2 adsorption-desorption, field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray analysis spectroscopy (EDAX) and transmission electron microscopy (TEM). The results showed that a single-phase Baghdadite was obtained by this new method at the calcination temperature of 800?°C. It was found that an increase in P123's content up to 0.025?mol changed the morphology of NB samples from mountain-like to needle-like. The potential application of NB samples as drug delivery agents was assessed by estimating their release properties up to 240?h. This research revealed that the synthesized Baghdadite could be used as a potential nanoporous carrier with controlled release capability in bone tissue regeneration.  相似文献   
33.
This work presents an engineering method for optimizing structures made of bars, beams, plates, or a combination of those components. Corresponding problems involve both continuous (size) and discrete (topology) variables. Using a branched multipoint approximate function, which involves such mixed variables, a series of sequential approximate problems are constructed to make the primal problem explicit. To solve the approximate problems, genetic algorithm (GA) is utilized to optimize discrete variables, and when calculating individual fitness values in GA, a second-level approximate problem only involving retained continuous variables is built to optimize continuous variables. The solution to the second-level approximate problem can be easily obtained with dual methods. Structural analyses are only needed before improving the branched approximate functions in the iteration cycles. The method aims at optimal design of discrete structures consisting of bars, beams, plates, or other components. Numerical examples are given to illustrate its effectiveness, including frame topology optimization, layout optimization of stiffeners modeled with beams or shells, concurrent layout optimization of beam and shell components, and an application in a microsatellite structure. Optimization results show that the number of structural analyses is dramatically decreased when compared with pure GA while even comparable to pure sizing optimization.  相似文献   
34.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   
35.
李兆生 《山东煤炭科技》2015,(1):112-113,118
对2320隐蔽老火区首先通过灌注泥浆对火区进行治理,同时对部分裂隙通道进行堵漏,然后对泥浆不能到达的区域注入高倍数三相泡沫灭火材料泡沫,瞬间将火源处覆盖,火源因隔绝氧气而窒息灭火。三相泡沫具有良好的堆积性和流动性,对煤体具有保水保湿,惰化遗煤氧化空间,并能够对松散煤体进行化学阻化,从本质上降低遗煤自然氧化速率,消灭了隐蔽老火区的火灾隐患,具有较高的推广价值。  相似文献   
36.
如今我国信息化技术全面发展,尤其对于工程测量工作领域来讲,不管是在工程建设和管理方面都产生不小的支撑引导效用。由此,笔者具体结合如今工程建设信息化测绘核心任何以及设备布置细节,进行结构整体安全管理周期和周边地理空间信息技术发展能效整理解析,试图将工程测量最新发展机遇和技术挑战问题处理完全。希望能够借此为日后一定时期范围内相关工程测量规划主体提供合理指导性建议内容,最终为我国各类工程事业可持续发展前景绽放奠定深刻适应基础。  相似文献   
37.
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism – yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.  相似文献   
38.
The solvent-dependent polymorphism of the active pharmaceutical ingredient (API) carbamazepine is interpreted from calculations of the solid-state and API-solvent intermolecular interactions. These simulations suggested that apolar solute-solute interactions could be disrupted by apolar solvents. In contrast, the polar solute-solute interactions were found to be easily disrupted by polar and protic solvents. This is consistent with experimental observations that the crystallization of the metastable form II is more dominant in apolar solvents. The Mercury program remains the gold standard in terms of usability; however, further expansion into more complex simulation techniques could make this package of even greater use in pharmaceutical manufacturing workflows.  相似文献   
39.
Bacterial cellulose membranes were employed as templates for calcium phosphates deposition by successive immersion in solutions of Ca(NO3)2·4H2O and (NH4)2HPO4, under ultrasonication. During the wet chemical reaction, mineral phases were loaded on bacterial cellulose fibrils, leading to precursor hybrid composites. These were subjected to a lyophilisation procedure in order to preserve the 3D porous aspect and afterwards to a thermal treatment with the aim of removing the polymeric phase and generating well crystallized structures. Different types of morphologies were achieved by varying the heating rate, as well as the calcination temperature and period. The as-prepared samples and the final ones were investigated from compositional and structural point of view through X-ray diffraction and Fourier-transform infrared spectroscopy and morphologically concerning by scanning electron microscopy. The magnetic properties were also evaluated in order to demonstrate the suitability of the obtained materials for the development of magnetic scaffolds dedicated to hard tissue applications.  相似文献   
40.
筒形阀是一种新型的水轮机进水阀,它与球阀或蝴蝶阀相比较有防止机组飞逸事故扩大效果明显、减轻导叶全关时导水机构的快速破坏并减少漏水量,以及动水开启方便、所需时间短等优点,但对运行条件也有一定的要求。光照水电站是贵州省第1个拟采用筒形阀的电站,为此对装设筒形阀的可行性和必要性进行了认真的分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号