首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53489篇
  免费   5716篇
  国内免费   3184篇
工业技术   62389篇
  2024年   130篇
  2023年   606篇
  2022年   1093篇
  2021年   1391篇
  2020年   1497篇
  2019年   1321篇
  2018年   1350篇
  2017年   1736篇
  2016年   1922篇
  2015年   2177篇
  2014年   3109篇
  2013年   3159篇
  2012年   4016篇
  2011年   4436篇
  2010年   3225篇
  2009年   3500篇
  2008年   3255篇
  2007年   4006篇
  2006年   3505篇
  2005年   2907篇
  2004年   2405篇
  2003年   2003篇
  2002年   1630篇
  2001年   1296篇
  2000年   1230篇
  1999年   1026篇
  1998年   786篇
  1997年   709篇
  1996年   643篇
  1995年   528篇
  1994年   428篇
  1993年   312篇
  1992年   279篇
  1991年   182篇
  1990年   162篇
  1989年   138篇
  1988年   98篇
  1987年   58篇
  1986年   33篇
  1985年   21篇
  1984年   18篇
  1983年   8篇
  1982年   15篇
  1981年   10篇
  1980年   12篇
  1979年   8篇
  1975年   1篇
  1973年   1篇
  1959年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
石油和天然气行业不断关注增材制造技术在航空航天和汽车行业的应用发展。研发了利用增材制造技术的超高膨胀封隔器,该封隔器的支承环系统由增材制造。增材制造设计大幅减少了支承系统的构件数量,同时显著提高了膨胀能力和额定压力。密封元件系统与增材制造支承环安装在一起,提供了极端膨胀比、零挤压间隙和对不规则孔的良好适应性。分析和测试结果表明:直径膨胀比高达111%,与常规封隔器相比,提高50%以上; 至少涵盖5种线重的套管(外径相同); 在148.89 ℃的温度下,密封元件能够保持压力68.95 MPa。介绍了增材制造技术、增材制造支承环概念、增材制造材料力学性能、密封元件系统优化和测试情况,以期给我国的完井作业提供借鉴。  相似文献   
12.
A new eight-node conforming quadrilateral element with high-order completeness, denoted as QH8-C1, is proposed in this article. First, expressions for the interpolation displacement function satisfying the requirements for high-order completeness in the global coordinate system are constructed. Second, the displacement function expression in global coordinates is transformed into isoparametric coordinates, and the relationships between the two series of coefficients for the two kinds of displacement function expressions are found. Third, the displacement function expression is modified to satisfy the requirements of nodal freedom and interelement boundary continuity. The key to the new element construction is the derivation of the linear relationship expressions among 12 coefficients of element displacement interpolation polynomials in the global and isoparametric coordinate systems. As a result, the relationship between quadratic completeness and interelement continuity is explicitly given, and a proof of the completeness and the continuity was conducted to theoretically guarantee the validity of the derivation results. Furthermore, in order to verify the correctness of the theoretical work, nine numerical examples were performed. The computation results from these examples demonstrate that QH8-C1 exhibited excellent performance, including high simulation accuracy, fast convergence, insensitivity to mesh distortion, and monotonic convergence.  相似文献   
13.
The main objective of the present work is to improve the performance of bonded joints in carbon fiber composite structures through introducing Multi-Walled Carbon Nanotubes (MWCNTs) into Epocast 50-A1/946 epoxy, which was primarily developed for joining and repairing of composite aircraft structures. Results from tension characterizations of structural adhesive joints (SAJs) with different scarf angles (5–45°) showed improvement up to 40% compared to neat epoxy (NE)–SAJs. Special attention was considered to investigate the performance of SAJs with 5° scarf angle under different environments. The tensile strength and stiffness of both NE-SAJs and MWCNT/E-SAJs were dramatically decreased at elevated temperature. Water absorption showed a marginal drop of about 2.0% in the tensile strength of the moist SAJs compared to the dry one. Cracks initiation and propagation were detected effectively using instrumented-SAJs with eight strain gauges. The experimental results agree well with the predicted using three-dimensional finite element analysis model.  相似文献   
14.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   
15.
An algorithm is presented for discrete element method simulations of energy-conserving systems of frictionless, spherical particles in a reversed-time frame. This algorithm is verified, within the limits of round-off error, through implementation in the LAMMPS code. Mechanisms for energy dissipation such as interparticle friction, damping, rotational resistance, particle crushing, or bond breakage cannot be incorporated into this algorithm without causing time irreversibility. This theoretical development is applied to critical-state soil mechanics as an exemplar. It is shown that the convergence of soil samples, which differ only in terms of their initial void ratio, to the same critical state requires the presence of shear forces and frictional dissipation within the soil system.  相似文献   
16.
Discrete Element Method (DEM) has been used for numerical investigation of sintering-induced structural deformations occurring in inverse opal photonic structures. The influence of the initial arrangement of template particles on the stability of highly porous inverse opal α-Al2O3 structures has been analyzed. The material transport, densification, as well as formation of defects and cracks have been compared for various case studies. Three different stages of defects formation have been distinguished starting with local defects ending with intrapore cracks. The results show that the packing of the template particles defined during the template self-assembly process play a crucial role in the later structural deformation upon thermal exposure. The simulation results are in very good agreement with experimental data obtained from SEM images and previous studies by ptychographic X-ray tomography.  相似文献   
17.
18.
Coupled large eddy simulation and the discrete element method are applied to study turbulent particle–laden flows, including particle dispersion and agglomeration, in a channel. The particle–particle interaction model is based on the Hertz–Mindlin approach with Johnson–Kendall–Roberts cohesion to allow the simulation of van der Waals forces in a dry air flow. The influence of different particle surface energies, and the impact of fluid turbulence, on agglomeration behaviour are investigated. The agglomeration rate is found to be strongly influenced by the particle surface energy, with a positive relationship observed between the two. Particle agglomeration is found to be enhanced in two separate regions within the channel. First, in the near-wall region due to the high particle concentration there driven by turbophoresis, and secondly in the buffer region where the high turbulence intensity enhances particle–particle interactions.  相似文献   
19.
Since the introduction of bender element tests to soil testing, the reliability of the estimated travel time has been the most serious problem. The author has previously shown a potential solution whereby removing the response of the bender element subsystem from the whole response could dramatically improve the accuracy of the travel time estimation. In order to lay the foundation for estimating the response of the bender element subsystem, this paper examines the correlation between the displacements of the element and the induced feedback signals by employing a self-monitoring element. The response of the self-monitoring element is modeled as a transfer function involving two internal transfer functions that relate the input signals to the displacements and the displacements to the feedback signals, respectively. Using a laser displacement sensor, the displacements are directly measured through the entire surface and reveal the three-dimensional bending motion of the element oscillating in both longitudinal and width directions. The feedback signals are similar to, but inconsistent with, the tip displacements, and an attempt is made to correct the feedback signals. Finally, a conclusion is given on the potential for estimating the response of the bender element subsystem using the self-monitoring element.  相似文献   
20.
Abstract

Ba0.95Ca0.05Ti1-xZrxO3 (BCTZO) ceramics were prepared by a solid state reaction method. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray absorption near edge structure (XANES). The ceramics exhibit a pure perovskite structure. The average grain size gradually decreases with increasing Zr concentration. XANES results indicate that the intensities of pre-edge peaks dropped with increasing Zr concentration. The BCTZO ceramic of x?=?0.05 has the optimum electrical properties with the maximum dielectric constant (ε'm), remanent polarization (2Pr), coercive electric field (2Ec) and piezoelectric charge constant (d33) of 7,244, 12.54 (μC/cm2), 5.29 (kV/cm) and 288 (pC/N), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号