首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61018篇
  免费   4979篇
  国内免费   5360篇
工业技术   71357篇
  2024年   228篇
  2023年   962篇
  2022年   1697篇
  2021年   2096篇
  2020年   2032篇
  2019年   1615篇
  2018年   1592篇
  2017年   2014篇
  2016年   1950篇
  2015年   2058篇
  2014年   2922篇
  2013年   3236篇
  2012年   3600篇
  2011年   4632篇
  2010年   3452篇
  2009年   3794篇
  2008年   3116篇
  2007年   4207篇
  2006年   4222篇
  2005年   3359篇
  2004年   2876篇
  2003年   2477篇
  2002年   2056篇
  2001年   1828篇
  2000年   1523篇
  1999年   1316篇
  1998年   997篇
  1997年   918篇
  1996年   878篇
  1995年   654篇
  1994年   573篇
  1993年   441篇
  1992年   396篇
  1991年   295篇
  1990年   267篇
  1989年   223篇
  1988年   136篇
  1987年   75篇
  1986年   68篇
  1985年   64篇
  1984年   65篇
  1983年   47篇
  1982年   57篇
  1981年   48篇
  1980年   40篇
  1978年   44篇
  1977年   39篇
  1976年   48篇
  1975年   51篇
  1974年   40篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
31.
研究了轧制变形量对WSTi544221合金棒材显微组织和力学性能的影响,并对Φ10 mm规格的棒材进行不同制度的固溶+时效处理,对比了不同热处理状态下棒材的组织和力学性能。结果表明,随着轧制变形量的增大,WSTi544221合金棒材的晶粒细化程度增大,强度逐渐提高,但塑性变化不大。经870℃×1 h/WC+520℃×6 h/AC固溶+时效处理后,强度与塑性可以获得良好匹配,当抗拉强度达到1 610 MPa、屈服强度达到1 531 MPa时,延伸率和断面收缩率可分别保持在12%和43%。  相似文献   
32.
33.
Linear friction welding of the Ti6Al4V alloy is studied. A new definition of the energy input rate is proposed, based on an integration over time of the in-plane force and velocity; a strong correlation with the upset rate is then found. The effective friction coefficient is estimated to be 0·5±0·1 for varying frequencies and amplitudes, with only a weak dependence on the processing conditions displayed. A model is proposed that accounts for both the conditioning and equilibrium stages of the process, which is shown to be in good agreement with the experimental data. The model is used to study the mechanism by which the flash is formed. A criterion is proposed by which the rippled nature of its morphology can be predicted.  相似文献   
34.
35.
High-entropy alloys (HEAs), as a new class of metallic materials, have received more and more attention due to its excellent mechanical properties. In this study, the hydrogen absorption properties, such as hydrogen absorption capacity, thermodynamics, kinetics and cyclic properties, as well as the hydride structure of a newly designed TiZrNbTa HEA were investigated. The results showed that multiple hydrides including ε-ZrH2, ε-TiH2 and β-(Nb,Ta)H were found in the TiZrNbTa HEA after hydrogenation. With the increase of temperature from 293 K to 493 K, the maximum hydrogen absorption capacity decreased from 1.67 wt% to 1.25 wt% and the plateau pressure related with β-(Nb,Ta)H hydrides increased from 1.6 kPa to 14.8 kPa. The formation enthalpy of β-(Nb,Ta)H hydride was determined to be −6.4 kJ/mol, which was less stable than that of NbH and TaH hydrides. The results also showed that the TiZrNbTa HEA exhibited a rapid hydrogen absorption kinetic even at the room temperature with a short incubation time, and the hydrogen absorption mechanism was determined to be the nucleation and growth mechanism. Moreover, the hydrogen absorption capacity at 293 K decreased slowly with the cycle numbers, and remained 86% capacity after 10 cycles. Cracking occurred after hydrogen absorption and became worse with cycles.  相似文献   
36.
In order to improve the process effectiveness and joint quality, ultrasonic vibrations were integrated with friction stir lap welding. Effect of ultrasonic exertion on the process and joint quality of AA 6061-T6 were investigated. Upon ultrasonic exertion, joints owned larger effective lap width, shorter hooks and improved strength. Weld fracture mode changed from a ductile–brittle mixed mode to a more ductile mode while the fracture path shifted from lap interface to beyond the stir zone. Material flow and interface defects were characterised using lap welded dissimilar aluminium alloy joints. Ultrasonic vibration improved the material flow and reduced the interfacial defects. Variations in failure load of joints were found in accordance with the variations in material flow and interfacial defects.  相似文献   
37.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   
38.
The feasibility of microbial hydrogen consumption to mitigate the hydrogen embrittlement (HE) under different cathodic potentials was evaluated using the Devanathan-Stachurski electrochemical test and the hydrogen permeation efficiency η. The hydrogen permeation efficiency η in the presence of strain GA-1 was lower than that in sterile medium. The cathodic potential inhibited the adherence of strain GA-1 to AISI 4135 steel surface, thereby reducing the hydrogen consumption of strain GA-1. The adherent GA-1 cells were capable of consuming ‘cathodic hydrogen’ and reducing the proportions of absorbed hydrogen, indicating that it is theoretically possible to control HE by hydrogen-consuming microbes.  相似文献   
39.
Although Mg alloy attracts great attention for engineering applications because of high specific strength and low density, low corrosion resistance limits its extensive use. In this study, Mg–Al–Zn–Mn alloy was treated via a laser cladding process to generate a dense and compact laser cladding layer with solid metallurgical bonding on the substrate for improving corrosion resistance, effectively hindering the corrosion pervasion into Mg alloy. The corrosion current density declined from 103 μA/cm2 for Mg alloy to 13 μA/cm2 for the laser cladding layer in NaCl aqueous solution. Moreover, the laser cladding layer was slightly corroded in comparison with Mg alloy in NaCl aqueous solution. Besides, the microhardness of the cladding layer reached a mean value of 170.5 HV, 3.1 times of Mg alloy (56.8 HV) due to the in situ formation of hardening intermetallic phases. Wear resistance of laser cladding layer was also obviously improved. These results demonstrated that the laser cladding layer obviously enhanced anticorrosion property of Mg alloy for engineering applications.  相似文献   
40.
Although Mg alloy possesses high specific strength, low density, and good biocompatibility, poor corrosion resistance hinders its further applications. In the present study, an innovative protective layer against corrosion was prepared on the AZ31 Mg alloy via alkali pretreatment followed by vanillic acid treatment. The alkali pretreatment supplied –OH for the AZ31 Mg alloy surface to react with vanillic acid. The vanillic acid treatment played a crucial role in enhancing the corrosion resistance due to the excellent ability to act as a barrier and retard aqueous solution penetration, which effectively isolated the underlying Mg alloy from the corrosive environment. The corrosion current density of alkali and vanillic acid-treated Mg alloy (AZ31V) almost showed two orders of magnitude lower values in comparison with that of the AZ31 Mg alloy, and the corrosion potential of AZ31V Mg alloy increased from −1.41 to −1.25 V. The immersion tests proved that there was no occurrence of severe corrosion. Hence, the alkali pretreatment and vanillic acid treatment may represent a promising method to improve the corrosion resistance of Mg alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号