首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69612篇
  免费   7456篇
  国内免费   2665篇
工业技术   79733篇
  2024年   496篇
  2023年   1701篇
  2022年   2379篇
  2021年   3164篇
  2020年   3045篇
  2019年   2557篇
  2018年   2880篇
  2017年   3226篇
  2016年   3250篇
  2015年   3346篇
  2014年   3934篇
  2013年   5047篇
  2012年   4398篇
  2011年   5449篇
  2010年   3663篇
  2009年   3972篇
  2008年   3291篇
  2007年   3577篇
  2006年   3416篇
  2005年   2668篇
  2004年   2610篇
  2003年   2231篇
  2002年   1816篇
  2001年   1240篇
  2000年   1129篇
  1999年   867篇
  1998年   771篇
  1997年   668篇
  1996年   497篇
  1995年   453篇
  1994年   326篇
  1993年   240篇
  1992年   245篇
  1991年   194篇
  1990年   242篇
  1989年   235篇
  1988年   82篇
  1987年   58篇
  1986年   59篇
  1985年   68篇
  1984年   67篇
  1983年   33篇
  1982年   55篇
  1981年   7篇
  1980年   35篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimated via assimilation of aircraft-based remotely sensed surface soil moisture into a distributed Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble square root filter (EnSRF) based on a Kalman filtering scheme was used for assimilating the aircraft-based soil moisture observations at a spatial resolution of 800 m × 800 m. The SWAP model inputs were derived from the SSURGO soil database, LAI (Leaf Area Index) data from SMEX04 database, and data from meteorological stations/rain gauges at the WGEW. Model predictions are presented in terms of temporal evolution of soil moisture probability density function at various depths across the WGEW. The assimilation of the remotely sensed surface soil moisture observations had limited influence on the profile soil moisture. More specifically, root zone soil moisture depended mostly on the soil type. Modeled soil moisture profile estimates were compared to field measurements made periodically during the experiment at the ground based soil moisture stations in the watershed. Comparisons showed that the ground-based soil moisture observations at various depths were within ± 1 standard deviation of the modeled profile soil moisture. Density plots of root zone soil moisture at various depths in the WGEW exhibited multi-modal variations due to the uneven distribution of precipitation and the heterogeneity of soil types and soil layers across the watershed.  相似文献   
32.
A new supported liquid membrane (SLM) system was prepared for the selective transport of bismuth ions from the aqueous feed into the aqueous permeate phase. The support of the SLM was a thin porous polypropylene or polyvinylidene fluoride membrane impregnated with diisooctyldithiophosphinic acid (Cyanex 301) as mobile carrier in 4‐chloroacetophenon as organic solvent. Cyanex 301 acts as a highly selective carrier for the uphill transport of bismuth ions through the SLM. In the presence of HNO3 as a metal ion acceptor in the strip solution, the transport of bismuth ions into the strip side reached 70 % of the initial feed concentration after 3.5 hours. The selectivity and efficiency of bismuth transport from aqueous solutions containing different mixtures of cations were investigated. In the presence of P2O72– ions as suitable masking agent in the feed solution, the interfering effects of other cations were completely eliminated. The selective transport of bismuth through SLM is superior to liquid‐liquid extraction or through bulk liquid membranes. This is due to the high efficiency. The SLM reduces the solvent requirements, combines extraction and stripping operations in a single process and allows the use of highly selective extractants. The system may be applied to samples containing very low bismuth concentrations.  相似文献   
33.
Nanocomposites based on poly(butylene terephthalate) (PBT) and an organoclay (Cloisite 30B) were prepared by melt blending using a twin‐screw extruder. Two kinds of PBTs, ie PBT‐A and PBT‐B, with different inherent viscosities (ηinh), were used for this study (ηinh of PBT‐A and PBT‐B were 0.74 and 1.48, respectively). Dispersion of the clay layers in the PBT nanocomposites was characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile and dynamic mechanical properties and non‐isothermal crystallization temperatures of the nanocomposites were also examined. Nanocomposites based on the higher‐viscosity PBT (PBT‐B) showed a higher degree of exfoliation of the clay and a higher reinforcing effect when compared to the composites based on the lower‐viscosity PBT (PBT‐A). The clay nanolayers dispersed in PBT matrices lead to increases in the non‐isothermal crystallization temperatures of the PBTs, with such increases being more significant for the PBT‐B nanocomposites than for the PBT‐A nanoocomposites. Copyright © 2004 Society of Chemical Industry  相似文献   
34.
The thermal and mechanical properties and the morphologies of blends of poly(propylene) (PP) and an ethylene–(vinyl alcohol) copolymer (EVOH) and of blends of PP/EVOH/ethylene–(methacrylic acid)–Zn2+ ionomer were studied to establish the influence of the ionomer addition on the compatibilization of PP/EVOH blends and on their properties. The oxygen transmission rate (O2TR) values of the blends were measured as well. PP and EVOH are initially incompatible as was determined by tensile tests and scanning electronic microscopy. Addition of the ionomer Zn2+ led to good compatibility and mechanical behaviour was improved in all blends. The mechanical properties on extruded films were studied for 90/10 and 80/20 w/w PP/EVOH blends compatibilized with 10 % of ionomer Zn2+. These experiments have shown that the tensile properties are better than in the injection‐moulded samples. The stretching during the extrusion improved the compatibility of the blends, diminishing the size of EVOH domains and enhancing their distribution in the PP matrix. As was to be expected, the EVOH improved the oxygen permeation of the films, even in compatibilized blends. Copyright © 2004 Society of Chemical Industry  相似文献   
35.
36.
Low dielectric poly[methylsilsesquioxane‐ran‐trifluoropropylsilsesquioxane‐ran‐(2,4,6,8‐tetramethyl‐2,4,6,8‐tetraethylenecyclotetrasiloxane)silsesquioxane]s {P[M‐ran‐TFP‐ran‐(TCS)]SSQs} having various compositions were synthesized using trifluoropropyl trimethoxysilane, methyl trimethoxysilane and 2,4,6,8‐tetramethyl‐2,4,6,8‐tetra(trimethoxysilylethyl)cyclotetrasiloxane. The chemical composition of the polymers and the content of SiOH end‐groups were controlled by adjusting the reaction conditions, and they were characterized by 1H‐NMR. The thermally decomposable trifluoropropyl groups on the P[M‐ran‐TFP‐ran‐(TCS)]SSQ backbone and heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (CD) were employed as pore generators. The dielectric constants of the porous CD/P[M‐ran‐TFP‐ran‐(TCS)]SSQ films were in the range 2.0–2.7 (at 100 kHz) depending on the concentration of the porogens, and showed no change over 4 days under aqueous conditions. The pore size of the films showed a bimodal distribution, with diameters of ca 0.5–1.0 nm for those originating from the trifluoropropyl groups and 1.7 nm from the CD. The elastic modulus and hardness of the 30 vol% CD‐blended film with a dielectric constant of 2.26 were 2.40 and 0.38 GPa, respectively, as determined by a nanoindenter. Copyright © 2005 Society of Chemical Industry  相似文献   
37.
Effects of Ca and Zr substitution upon the dielectric properties of Ba5LaTi3Ta7O30 ceramics were investigated together with the structural characterization. All the samples of Ba5La(ZrxTi1−x)3Ta7O30 formed a filled tungsten-bronze structures, whereas the solid solution limit was determined as x=0.25 in (CaxBa1−x)5LaTi3Ta7O30. Beyond this limit secondary phase of CaTa2O6 was detected and it would become the major phase for the Ca-rich compositions. The temperature coefficient of dielectric constant was improved with increasing Zr content while the dielectric constant decreased and the low dielectric loss varied little (in the order of 10−4). In the case of (CaxBa1−x)5LaTi3Ta7O30, small temperature coefficient of dielectric constant could be obtained with increasing Ca content while the dielectric constant decreased significantly, and a small amount substitution of Ca for Ba induced decrease in dielectric loss.  相似文献   
38.
A comparative study of gas sensing behavior of nanocrystalline nickel ferrite synthesized by micro-emulsion and hydrothermal method to liquefied petroleum gas (LPG) is presented. Nanocrystalline nickel ferrite synthesized by hydrothermal method indicated higher electrical conductivity and gas sensitivity at low operating temperature compared to nanocrystalline nickel ferrite synthesized by reverse micelle technique. This difference in the gas sensing behavior can be attributed to the presence of more oxygen vacancies (i.e. non-stoichiometry) in the hydrothermally synthesized nickel ferrite. Incorporation of palladium had a catalytic effect and the operating temperature was significantly reduced in both the samples. The higher operating temperature of the reverse micelle nickel ferrite material makes the sensor response speed faster (∼10 s) compared to the hydrothermally synthesized material (∼1 min).  相似文献   
39.
The thick film of Zn-Sb-O was prepared by coating the paste of nanoparticles mixture (Sb2O3:ZnO=1:3) on the alumina substrate, followed by sintering at 500-900 °C for 2 h in air. The electrical resistance and gas-sensing properties to benzene, alcohol and acetone of Zn-Sb-O films were found to be dependent on the change of phase structure caused by sintering temperature.  相似文献   
40.
BBN (BaBi2Nb2O9) is very interesting and promising lead free material with relaxor properties in capacitors, sensors and actuators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号