首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   58篇
  国内免费   2篇
工业技术   311篇
  2024年   1篇
  2023年   10篇
  2022年   20篇
  2021年   16篇
  2020年   38篇
  2019年   41篇
  2018年   15篇
  2017年   27篇
  2016年   17篇
  2015年   19篇
  2014年   13篇
  2013年   17篇
  2012年   18篇
  2011年   12篇
  2010年   10篇
  2009年   9篇
  2008年   4篇
  2007年   12篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
41.
In this study, parabolic trough collector with an integrated source of geothermal water is used with regenerative Rankine cycle with an open feedwater heater, an electrolyzer, and an absorption cooling system. The absorption fluids used in the solar collectors were Al2O3‐ and Fe2O3‐based nanofluids. Detailed energetic and exergetic analyses are done for the whole system including all the components. A comparative analysis of both the used working fluids is done and plotted against their different results. The parameters that are varied to change the output of the system are ambient temperature, solar irradiance, the percentage of nanofluids, the mass flow rate of the geothermal well, the temperature gradient of the geothermal well that had an effect on the net power produced, and the outlet temperature of the solar collector overall energetic and exergetic efficiencies. Other useful outputs by this domestic integrated multigeneration system are the heating of domestic water, space heating (maintaining the temperature at 40°C‐50°C), and desalination of seawater (flash distillation). The hydrogen production rate for both the fluids diverges with each other, both producing average from 0.00490 to 0.0567 g/s.  相似文献   
42.
Impacts of an inclined electromagnetic force on a mixed convective process in two-sided lid-driven geometries using the two-energy equation model are examined in this study. The flow domain is filled by a porous medium and the local thermal nonequilibrium model is applied. Magnetic micropolar nanofluids are assumed as working fluids consisting of water as a base fluid and CuO as nanoparticles. The forced convection situation is due to the moving of the upper and lower walls in the right direction with a constant velocity. The used methodology depends on the finite volume method, together with the SIMPLE algorithm. The obtained outcomes are visualized using contours of the streamlines, isotherms for the nanofluid phase, isotherms for the solid phase, and angular velocity. The main findings revealed that the increase in lengths of the heated parts and the Nield number reduces the Nusselt number for the nanofluid phase. Also, the average heat transfer rate for the nanofluid and solid phases are boosted with the increase in the vortex viscosity.  相似文献   
43.
设计一种使用简化CPC(非追踪式复合抛物线聚光板)集热板和新型开放式热管组合的全真空玻璃集热管中温太阳能空气集热装置。每个集热单元包括一个简化CPC集热板,一根全真空玻璃集热管,在玻璃集热管内安装一个铜管和外部的一个蒸汽包连接构成一个开放式热管结构。蒸汽包内安装螺旋换热管加热通过换热管的流动空气工质。分别使用水和CuO纳米流体作为热管工质,以空气作为集热工质,对热管式中温空气集热器的传热特性进行了实验研究。分析了不同工作压力、不同工质及纳米流体质量分数对热管集热传热特性的影响,详细比较了热管水工质和纳米流体工质在集热传热性能上的优劣。试验结果表明:本系统只使用2根玻璃集热管构成集热器,空气最大出口温度在夏天可达到200℃,在冬天可接近160℃,系统平均集热效率达到0.4以上,整个系统表现了良好的中温集热特性。以纳米流体为工质的热管热阻比以水为工质时平均降低了20%左右  相似文献   
44.
BN/EG纳米流体的制备及稳定性研究   总被引:2,自引:0,他引:2  
通过两步法制备了氮化硼/乙二醇(BN/EG)纳米流体,研究了超声振荡时间、pH值、分散剂种类及添加量3种因素对其稳定性的影响。结果表明超声分散时间太长或太短都不利于流体的稳定性,实验中取30min最好;酸或碱的加入都会使BN/EG纳米流体稳定性急剧恶化;适量分散剂PVP的加入能够明显改善BN/EG纳米流体的稳定性。  相似文献   
45.
Predictions are reported for laminar mixed convection using various types of nanofluids over a horizontal backward‐facing step in a duct, in which the upstream wall and the step are considered adiabatic surfaces, while the downstream wall from the step is heated to a uniform temperature that is higher than the inlet fluid temperature. The straight wall that forms the other side of the duct is maintained at constant temperature equivalent to the inlet fluid temperature. Eight different types of nanoparticles, Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2, with 5% volume fraction are used. The conservation equations along with the boundary conditions are solved using the finite volume method. Results presented in this paper are for a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The Reynolds number is in the range of 75 ≤ Re ≤ 225. The downstream wall was fixed at a uniform wall temperature in the range of 0 ≤ ΔT ≤ 30 °C which is higher than the inlet flow temperature. Results reveal that there is a primary recirculation region for all nanofluids behind the step. It is noticed that nanofluids without secondary recirculation region have a higher Nusselt number and it increases with Prandtl number decrement. On the other hand, nanofluids with secondary recirculation regions are found to have a lower Nusselt number. Diamond nanofluid has the highest Nusselt number in the primary recirculation region, while SiO2 nanofluid has the highest Nusselt number downstream of the primary recirculation region. The skin friction coefficient increases as the temperature difference increases and the Reynolds number decreases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20344  相似文献   
46.
Conductivity values of nanofluids calculated with the model proposed by Nan et al. 1 consistently underestimate the corresponding measured values for 20 sets of experimental data from 12 published studies; thus the conclusion of the recent International Nanofluid Property Benchmark Exercise 2 which stated that it is not necessary to resort to other theories (e.g., Brownian motion, liquid layering, and aggregation) for the interpretation of the INPBE database cannot be generalized. In view of this situation, a new model which takes into account clustering and micro‐convection is proposed and compared with experimental data for five nanofluids (with different particle sizes and a range of particle concentrations) as well as two previously published models. The maximum difference between the predictions of the proposed model and the measured values is 6.7% of the latter. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20350  相似文献   
47.
熔盐作为相变材料,可以用作聚热太阳能电站中的储热介质,通过向基盐中添加不同比例的纳米材料可以显著增强熔盐的热物性。将20 nm的SiO2纳米颗粒分别分散到硝酸钾、硝酸钠和solar salt (60% NaNO3,40% KNO3,均为质量分数)中制备成稳定的纳米流体,制备的每一种纳米流体都经过溶解、超生、干燥蒸发等过程。采用差式扫描量热法测量熔盐的比热容、熔化潜热、熔点等热物理性质,并采用激光闪射法对基盐和纳米熔盐的热扩散系数进行测量和分析。结果表明,SiO2颗粒的添加对硝酸钠、硝酸钾和solar salt的熔化潜热、比热容和热导率等热物理性质有显著的影响。与基盐相比,solar salt、硝酸钾和硝酸钠在液态的比热容值分别增加了4.7%~15.89%、3.9%~33.5%、1.9%~11.86%;测得的热导率分别最大增加了17.16%、39.7%、9.5%。  相似文献   
48.
To investigate the heat transfer characteristics of a car radiator involved nanofluids, we used GAMBIT & FLUENT softwares and calculated the effective physical parameters using some famous models as a single‐phase mixture. Carbon nanotubes and boron nitride nanotubes have been used in less than 1% volume concentration in flat and twisted tubes. Our results show that nanofluids application in a twisted tube gives a great enhancement in the thermal performance in comparison of the flat tube.  相似文献   
49.
This work is devoted to study the natural convection boundary‐layer flow of nanofluids along a vertical flat plate with the effect of sinusoidal surface temperature variations. The model utilized for the nanofluid incorporates the effects of Brownian motion and thermophoresis. An appropriate set of dimensionless variables is used to transform the governing equations of the problem into a nonsimilar form. The obtained nonsimilar equations have the property that they reduce to various special cases previously considered in the open literature. An adequate and efficient implicit, tri‐diagonal finite difference method is employed for the numerical solution of the obtained equations. Comparison with previously published work is performed and the results are found to be in excellent agreement. A representative set of numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction, as well as the surface shear stress, rates of heat and nanoparticle volume fraction have been presented graphically and discussed to show interesting features of the solutions.  相似文献   
50.
In this study, an interrupted microchannel heat sink with rib turbulators was studied for its thermohydraulic effectiveness and entropy generation in a compact space. The rib edges are modified to enhance the overall functioning of the system by reducing the pressure drop. The working fluid used was Al2O3-water nanofluid, and increasing the Reynolds number and nanoparticle concentration triggered a reduction in the heat sink's maximum temperature. These also offer a decrease in resistance to heat transfer, and there is an improvement in the evenness of the temperature of the interrupted microchannel heat sink, as regions with the likelihood of hot spot reduced drastically. At Re = 100, increasing the nanoparticle concentration from 0% to 4% enhanced the heat transfer coefficient by 38.41% for the interrupted microchannel heat sink-base (IMCH-B) configuration. Under similar conditions, the convective heat transfer coefficient for the interrupted microchannel heat sink-fillet (IMCH-F) increased by 43.69%. Furthermore, at 0.5% concentration, changing the Reynolds number from 100 to 700 augmented the heat transfer coefficient by 70.65%. Thus, the maximum temperature of the substrate's bottom surface was reduced by 53.83°C when the system was operated at Re = 700 and nanoparticle concentration of 4%. The IMCH-C also showed relatively close results at all observed volume fractions. For the IMCH-C, the maximum temperature of the bottom surface was reduced by 41.98°C at Re = 700 when compared with Re = 100% and 4% concentration. Although at high Reynolds numbers and concentrations, the pressure drops are higher, the performance enhancement criteria prove that the nanofluid is superior to water and the edge modifications show significant performance improvement. More importantly, the IMCH-F heat sink showed the optimum performance based on the performance evaluation criteria at Re = 300 and φ=2% (ie, at this point, the heat transfer coefficient is maximum and the pressure drop is minimum). On the other hand, the optimal thermodynamic performance was observed at Re = 700 and φ=4%. The numerical results demonstrated a potential way to exploit nano-suspensions for thermal applications, especially for high-energy flux systems with compact space constraints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号