首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175454篇
  免费   21037篇
  国内免费   12587篇
工业技术   209078篇
  2024年   618篇
  2023年   2457篇
  2022年   4759篇
  2021年   5543篇
  2020年   5862篇
  2019年   4743篇
  2018年   4562篇
  2017年   6078篇
  2016年   6954篇
  2015年   7505篇
  2014年   10889篇
  2013年   11262篇
  2012年   13323篇
  2011年   14723篇
  2010年   10492篇
  2009年   10766篇
  2008年   10020篇
  2007年   12261篇
  2006年   11078篇
  2005年   9303篇
  2004年   7922篇
  2003年   6651篇
  2002年   5390篇
  2001年   4530篇
  2000年   3844篇
  1999年   3205篇
  1998年   2585篇
  1997年   2165篇
  1996年   1964篇
  1995年   1617篇
  1994年   1353篇
  1993年   979篇
  1992年   800篇
  1991年   608篇
  1990年   541篇
  1989年   464篇
  1988年   308篇
  1987年   172篇
  1986年   155篇
  1985年   86篇
  1984年   108篇
  1983年   75篇
  1982年   61篇
  1981年   38篇
  1980年   41篇
  1979年   43篇
  1978年   13篇
  1977年   12篇
  1959年   47篇
  1951年   49篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Motion of a stick-slip piezo actuator is generally controlled by the parameters related to its mechanical design and characteristics of the driving pulses applied to piezoceramic shear plates. The goal of the proposed optimization method is to find the driving pulse parameters leading to the fastest and the most reliable actuator operation. In the paper the method is tested on a rotary stick-slip piezo actuating system utilized in an atomic force microscope.The optimization is based on the measurement of the actuator response to driving pulses of different shapes and repetition frequencies at various load forces. To provide it, a computer controlled testing system generating the driving pulses, and detecting and recording the corresponding angular motion response of the actuator by a position sensitive photo detector (PSPD) in real time has been developed. To better understand and interpret the experimental results, supportive methods based on a simple analytical model and numerical simulations were used as well.In this way the shapes of the single driving pulses and values of the load force providing the biggest actuator steps were determined. Generally, the maximal steps were achieved for such a combination of the pulse shapes and load forces providing high velocities at the end of the sticking mode of the actuator motion and, at the same time, lower decelerations during the slipping mode.As for the multiple driving pulses, the pulse shapes and values of repetition frequency ensuring the sticking mode of the actuator motion during the pulse rise time together with the maximum average angular rotor velocity were specified. In this way the effective and stable operation conditions of the actuator were provided.In principle, the presented method can be applied for the testing and optimization of any linear or angular stick-slip actuator.  相似文献   
82.
张立祥  闫宣宣 《煤矿机械》2020,41(1):117-119
针对当前KJS-Y系列降尘器效率低的问题,通过调整叶轮轴向间隙与径向间隙参数,分别对不同安装参数的降尘器进行数值模拟,通过数值模拟分析特定截面压力分布情况,确定了叶轮最佳安装参数,大大提高了降尘器的工作效率,同时降低了设计成本。  相似文献   
83.
The chemical method has proved to be the most effective mitigating method of wax deposition in petroleum system as it deals with the root cause of wax formation. Most of the commercial chemicals in the industry are very expensive and toxic. This paper aims the use of biodiesel based additives for improving the rheological behavior and pour points of waxy crude from Nigeria field. The biodiesels derived additives gave better performance than the commercial chemical and the seed oils as greatly improvement in rheology and pour point values of the waxy crude were observed  相似文献   
84.
85.
ABSTRACT

The thermoplastic and low dielectric constants polyimides were introduced. The polyimides were prepared by pyromellitic dianhydride (PMDA) or 4,4?-(4,4?-Isopropylidenediphenoxy)diphthalic anhydride (BPADA) as anhydride monomer and 4,4?-oxydianiline (ODA) or 2,2-bis(4-(4-aminephenoxy)phenyl)propane (BAPP) as amine monomer. The polyimides were well characterized by FT-IR, thermogravimetric analysis, dynamic thermomechanical analysis, dielectric measurement, and tensile test. The dielectric constants were 2.32–2.95 compared with 3.10 of ODA-PMDA polyimide, while partly polyimides were thermoplastic. The results indicated anhydride monomers, containing lateral methyl groups, made polyimides become thermoplastic. The results of molecular simulations via Materials Studio also proved this conclusion.  相似文献   
86.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
87.
88.
The simultaneous flow of gas, oil, and water forms various flow patterns due to the complex interfacial relationships. Three-phase flow patterns are classified as the gas-liquid and liquid-liquid flow patterns. Pressure drop, void fraction, liquid holdup, and phase distribution are important characteristics of the three-phase flow. These characteristics are generally associated with the three-phase flow patterns. Hence, the knowledge about flow patterns can help to predict the overall behavior of the three-phase flow. Studies have been conducted to identify three-phase flow pattern and their characteristics at various superficial velocities of gas, oil, and water. The major purpose of the studies is to gather information about the three-phase co-current flow and use it for improvement of the efficiency of the flow systems. Therefore, the accuracy of the measurement technique is critical. Several types of flow pattern identification and measurement techniques have been developed to improve accuracy and provide high-quality results. In this article, classical and advanced techniques used for the three-phase flow identification and measurement have been reviewed. The survey will help the researchers working in the area of multiphase flow to choose the right technique based on the objectives of the studies.  相似文献   
89.
The conceptual modelling phase of simulation studies has proven to be effective in enhancing the impact of simulation modelling in different domains. However, this simulation phase did not receive much attention in the construction simulation domain. The objective of this paper is to identify the roles that conceptual modelling can play in advancing the engagement, accuracy, and adoption (among other things) of discrete-event simulation studies in construction. In this paper, a Systematic Literature Review (SLR) is conducted, which involves a comprehensive search of databases and researchers’ profiles to identify journal papers, conference articles, books, and theses that have reported the benefits of conceptual modelling for discrete-event simulation studies. The review resulted in 82 documents that were published from 2000 to 2020. Results indicate that the benefits of conceptual modelling include facilitating communications between stakeholders, capturing sufficient information for the simulation model, improving the quality of simulation models, guiding other simulation modelling activities, and facilitating verification and validation of simulation models. By linking these benefits to the current research agenda in construction simulation, this paper shows the significance and potential of the conceptual modelling phase to enhance the impact of discrete-event simulation studies in construction.  相似文献   
90.
Wax deposit properties are a significant concern in pipeline pigging during waxy crude oil transportation. In the present work, the impacts of flow conditions and oil properties on the wax precipitation characteristics of wax deposits are investigated. A flow loop apparatus was developed to conduct wax deposition experiments using four crude oils collected from different field pipes. The differential scanning calorimetry (DSC) technique was employed to observe the wax precipitation characteristics of crude oil and wax deposit. The results show that the wax content and the wax appearance temperature (WAT) of the deposits increase with shear stress and radial temperature gradient, and decrease with radial wax molecule concentration gradient near the pipe wall. The DSC tests on the wax deposits revealed that the deposit wax content is strongly correlated to the oil wax content. Furthermore, an empirical correlation was developed to predict the wax content and the WAT of the wax deposit. Verification of the empirical correlation using the different oils indicated that the average relative error of the wax content prediction and average absolute error of WAT prediction were 13.2% and 3.6°C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号