首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   6篇
  国内免费   17篇
地球科学   219篇
  2022年   1篇
  2019年   2篇
  2017年   8篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   3篇
  2011年   19篇
  2010年   17篇
  2009年   21篇
  2008年   22篇
  2007年   21篇
  2006年   10篇
  2005年   20篇
  2004年   21篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有219条查询结果,搜索用时 234 毫秒
21.
The Cassini spacecraft encountered Jupiter in late 2000. Within more than 1 AU of the gas giant the Cosmic Dust Analyser onboard the spacecraft recorded the first ever mass spectra of jovian stream particles. To determine the chemical composition of particles, a comprehensive statistical analysis of the dataset was performed. Our results imply that the vast majority (>95%) of the observed stream particles originate from the volcanic active jovian satellite Io from where they are sprinkled out far into the Solar System. Sodium chloride (NaCl) was identified as the major particle constituent, accompanied by sulphurous as well as potassium bearing components. This is in contrast to observations of gas in the ionian atmosphere, its co-rotating plasma torus, and the neutral cloud, where sulphur species are dominant while alkali and chlorine species are only minor components. Io has the largest active volcanoes of the Solar System with plumes reaching heights of more than 400 km above the moons surface. Our in situ measurements indicate that alkaline salt condensation of volcanic gases inside those plumes could be the dominant formation process for particles reaching the ionian exosphere.  相似文献   
22.
华北克拉通在中生代以来遭受了显著破坏。前人的研究对克拉通破坏的机制和峰期取得了较大共识, 但是关于克拉通破坏的启动时间一直存在争议。本文通过对冀北金台子中生代盆地构造特征及其填充的火山岩地球化学和年代学进行分析, 为华北克拉通破坏启动时间提供新的约束。研究表明, 金台子盆地为一伸展断陷盆地。盆地呈北东-南西向展布, 东侧被正断层控制, 西侧为地层超覆边界。盆地内自下而上发育后城组、白旗组、啕北营组、九佛堂组火山-沉积组合。后城组是一套稳定的河流相红色砂砾岩沉积地层;白旗组和啕北营组主体为巨厚层流纹岩、流纹质凝灰熔岩, 局部夹安山岩和火山碎屑岩;九佛堂组是一套以砾岩、砂砾岩等为主体的碎屑岩。地球化学分析表明金台子盆地中发育的酸性火山岩源于地壳重熔。锆石U-Pb年代学研究显示, 金台子盆地内流纹岩自约145 Ma开始广泛喷发并形成巨厚层的酸性火山岩地层, 表明此时在华北北缘地区的岩石圈减薄和破坏可能就已非常剧烈, 据此华北克拉通在其北缘的破坏至少应早于145 Ma。  相似文献   
23.
Evidence of volcano-ground ice interactions on Mars can provide important constraints on the timing and distribution of martian volcanic processes and climate characteristics. Northwest of the Elysium Rise is Hrad Vallis, a ∼370 m deep, 800 km long sinuous valley that begins in a source region at 34° N, 218° W. Flanking both sides of the source region is a lobate deposit that extends ∼50 km perpendicular from the source and is an average of ∼40 m thick. Previous studies have suggested the formation of the Hrad Vallis source region was the result of explosive magma-ice interaction and that the lobate deposit is a mudflow; here we use newly available MOLA, MOC, and THEMIS data to investigate the evidence supporting this hypothesis. Within the lobate deposit we have identified 12 craters with thermal infrared signatures and morphologies that are distinct from any other craters or depressions in the region. The thermally distinct craters are distinguished by their cool interiors surrounded by warm ejecta in the nighttime THEMIS IR data and warm interiors surrounded by cool ejecta in the daytime THEMIS IR data. The craters are typically 1100-1800 m in diameter (one crater is ∼2300 m across) and 30-40 m deep, but may be up to 70 m. The craters are typically circular and have central depressions (several with interior dune fill) surrounded by ∼1 to >6 concentric fracture sets. The distribution of the craters and their morphology suggests that they are likely the result of the interaction between a hot mudflow and ground ice.  相似文献   
24.
We have studied data from the Galileo spacecraft's three remote sensing instruments (Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR)) covering the Zamama-Thor region of Io's antijovian hemisphere, and produced a geomorphological map of this region. This is the third of three regional maps we are producing from the Galileo spacecraft data. Our goal is to assess the variety of volcanic and tectonic materials and their interrelationships on Io using planetary mapping techniques, supplemented with all available Galileo remote sensing data. Based on the Galileo data analysis and our mapping, we have determined that the most recent geologic activity in the Zamama-Thor region has been dominated by two sites of large-scale volcanic surface changes. The Zamama Eruptive Center is a site of both explosive and effusive eruptions, which emanate from two relatively steep edifices (Zamama Tholi A and B) that appear to be built by both silicate and sulfur volcanism. A ∼100-km long flow field formed sometime after the 1979 Voyager flybys, which appears to be a site of promethean-style compound flows, flow-front SO2 plumes, and adjacent sulfur flows. Larger, possibly stealthy, plumes have on at least one occasion during the Galileo mission tapped a source that probably includes S and/or Cl to produce a red pyroclastic deposit from the same vent from which silicate lavas were erupted. The Thor Eruptive Center, which may have been active prior to Voyager, became active again during the Galileo mission between May and August 2001. A pillanian-style eruption at Thor included the tallest plume observed to date on Io (at least 500 km high) and new dark lava flows. The plume produced a central dark pyroclastic deposit (probably silicate-rich) and an outlying white diffuse ring that is SO2-rich. Mapping shows that several of the new dark lava flows around the plume vent have reoccupied sites of earlier flows. Unlike most of the other pillanian eruptions observed during the Galileo mission, the 2001 Thor eruption did not produce a large red ring deposit, indicating a relative lack of S and/or Cl gases interacting with the magma during that eruption. Between these two eruptive centers are two paterae, Thomagata and Reshef. Thomagata Patera is located on a large shield-like mesa and shows no signs of activity. In contrast, Reshef Patera is located on a large, irregular mesa that is apparently undergoing degradation through erosion (perhaps from SO2-sapping or chemical decomposition of sulfur-rich material) from multiple secondary volcanic centers.  相似文献   
25.
Europa's surface exhibits numerous small dome-like and lobate features, some of which have been attributed to fluid emplacement of ice or slush on the surface. We perform numerical simulations of non-Newtonian flows to assess the physical conditions required for these features to result from viscous flows. Our simulations indicate that the morphology of an ice flow on Europa will be, at least partially, influenced by pre-existing topography unless the thickness of the flow exceeds that of the underlying topography by at least an order of magnitude. Three classes of features can be identified on Europa. First, some (possibly most) putative flow-like features exhibit no influence from the pre-existing topography such as ridges, although their thicknesses are generally on the same order as those of ridges. Therefore, flow processes probably cannot explain the formation of these features. Second, some observed features show modest influence from the underlying topography. These might be explained by ice flows with wide ranges of parameters (ice temperatures >230 K, effusion rates >107 m3 year−1, and a wide range of grain sizes), although surface uplift (e.g., by diapirism) and in situ disaggregation provide an equally compelling explanation. Third, several observed features are completely confined by pre-existing topographic structures on at least one side; these are the best known candidates for flow features on Europa. If these features resulted from solid-ice flows, then temperatures >260 K and grain sizes <2 μm are required. Such small grain sizes seem unlikely; low-viscosity flows such as ice slurries or brines provide a better explanation for these features. Our results provide theoretical support for the view that many of Europa's lobate features have not resulted from solid-ice flows.  相似文献   
26.
Between 1999 and 2002, the Galileo spacecraft made 6 close flybys of Io during which many observations of Io's thermal radiation were made with the photopolarimeter-radiometer (PPR). While the NIMS instrument could measure thermal emission from hot spots with T>200 K, PPR was the only Galileo instrument capable of mapping the lower temperatures of older, cooling lava flows, and the passive background. We tabulate all data taken by PPR of Io during these flybys and describe some scientific highlights revealed by the data. The data include almost complete coverage of Io at better than 250 km resolution, with extensive regional coverage at higher resolutions. We found a modest poleward drop in nighttime background temperatures and evidence of thermal inertia variations across the surface. Comparison of high spatial resolution temperature measurements with observed daytime SO2 gas pressures on Io provides evidence for local cold trapping of SO2 frost on scales smaller than the 60 km resolution of the PPR data. We also calculated the power output from several hot spots and estimated total global heat flow to be about 2.0-2.6 W m−2. The low-latitude diurnal temperature variations for the regions between obvious hot spots are well matched by a laterally-inhomogeneous thermal model with less than 1 W m−2 endogenic heat flow.  相似文献   
27.
In this study, we examine the lunar mare dome Mee 1 situated near the craters Mee H and Drebbel F in a region showing evidence of ancient (pre-Orientale) mare volcanism and cryptomare deposits. Regional stratigraphic relations indicate that Mee 1 was formed prior to the Orientale impact at the beginning of the Imbrian period. Based on a combined photoclinometry and shape from shading technique applied to telescopic CCD images of the dome acquired under oblique illumination, we determined a diameter of Mee 1 of 25 km, a height of 250 m, a flank slope of 1.15°, and a volume of . Based on rheologic modelling of the dome and a viscoelastic model of the feeder dike, we obtained a magma viscosity of , an effusion rate of , a duration of the effusion process of 1.6 years, a magma rise speed of , a width of the feeder dike of 32 m, and a horizontal dike length of 144 km. A comparison of Mee 1 with domes with similar morphometric properties, which are located near Milichius and inside the crater Petavius, reveals strong similarities with respect to the viscosity of the dome-forming magma and the feeder dike geometry, while the effusion rate and magma rise speed of Mee 1 are somewhat higher. The pronounced morphometric differences between Mee 1 and a smaller dome situated close to the crater Doppelmayer and characterised by a similar magma viscosity suggest that the growth of that dome was limited by exhaustion of the magma reservoir, while Mee 1 and the other larger domes display morphometric properties presumably coming closer to the cooling limit. The comparison of the ancient dome Mee 1 with the younger (Eratosthenian) edifices near Milichius and Doppelmayer suggests that the conditions in the upper mantle and the crust favoured high eruption volumes, effusion rates, and magma rise speeds, implying the occurrence of large magma reservoirs preventing the limitation of dome growth by magma exhaustion. On the other hand, we observe similar general morphometric, rheologic, and feeder dike characteristics and, thus, conclude that the formation conditions of lunar mare domes did not change fundamentally during the Imbrian period.  相似文献   
28.
This study examines a set of lunar domes with very low flank slopes which differ in several respects from the frequently occurring lunar effusive domes. Some of these domes are exceptionally large, and most of them are associated with faults or linear rilles of presumably tensional origin. Accordingly, they might be interpreted as surface manifestations of laccolithic intrusions formed by flexure-induced vertical uplift of the lunar crust (or, alternatively, as low effusive edifices due to lava mantling of highland terrain, or kipukas, or structural features). All of them are situated near the borders of mare regions or in regions characterised by extensive effusive volcanic activity. Clementine multispectral UVVIS imagery indicates that they do not preferentially occur in specific types of mare basalt. Our determination of their morphometric properties, involving a combined photoclinometry and shape from shading technique applied to telescopic CCD images acquired at oblique illumination, reveals large dome diameters between 10 and more than 30 km, flank slopes below 0.9°, and volumes ranging from 0.5 to 50 km3. We establish three morphometric classes. The first class, In1, comprises large domes with diameters above 25 km and flank slopes of 0.2°-0.6°, class In2 is made up by smaller and slightly steeper domes with diameters of 10-15 km and flank slopes between 0.4° and 0.9°, and domes of class In3 have diameters of 13-20 km and flank slopes below 0.3°. While the morphometric properties of several candidate intrusive domes overlap with those of some classes of effusive domes, we show that a possible distinction criterion are the characteristic elongated outlines of the candidate intrusive domes. We examine how they differ from typical effusive domes of classes 5 and 6 defined by Head and Gifford [Head, J.W., Gifford, A., 1980. Lunar mare domes: classification and modes of origin. Moon Planets 22, 235-257], and show that they are likely no highland kipukas due to the absence of spectral contrast to their surrounding. These considerations serve as a motivation for an analysis of the candidate intrusive domes in terms of the laccolith model by Kerr and Pollard [Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of laccoliths. J. Struct. Geol. 20(12), 1783-1793], to estimate the geophysical parameters, especially the intrusion depth and the magma pressure, which would result from the observed morphometric properties. Accordingly, domes of class In1 are characterised by intrusion depths of 2.3-3.5 km and magma pressures between 18 and 29 MPa. For the smaller and steeper domes of class In2 the magma intruded to shallow depths between 0.4 and 1.0 km while the inferred magma pressures range from 3 to 8 MPa. Class In3 domes are similar to those of class In1 with intrusion depths of 1.8-2.7 km and magma pressures of 15-23 MPa. As an extraordinary feature, we describe in some detail the concentric crater Archytas G associated with the intrusive dome Ar1 and discuss possible modes of origin. In comparison to the candidate intrusive domes, terrestrial laccoliths tend to be smaller, but it remains unclear if this observation is merely a selection effect due to the limited resolution of our telescopic CCD images. An elongated outline is common to many terrestrial laccoliths and the putative lunar laccoliths, while the thickness values measured for terrestrial laccoliths are typically higher than those inferred for lunar laccoliths, but the typical intrusion depths are comparable.  相似文献   
29.
The high-K calc-alkaline volcanic rocks along the Neogene Volcanic Province of SE Spain represent crustal anatectic melts mixed with mantle components during the opening of the Alborán Sea. Partially melted metapelitic enclaves, along with the geochemical signature, provide evidence of their crustal source. U–Pb SHRIMP geochronology on monazite and zircon from enclaves and their hosting lavas in the localities of El Hoyazo, Mazarrón and Mar Menor reveals variable delays between the melting at depth and the eruption of the volcanics. These data indicate that: (1) the most important event of anatexis in the Neogene spanned at least the 3 m.y. interval between 12 and 9 Ma; (2) there is no trend in age of crustal melting; and (3) the delay between magma generation and extrusion varies from more than 3 m.y. at El Hoyazo to ~0.5 m.y. and possibly 2.5 m.y. at Mar Menor, with no significant delay measurable at Mazarrón. The variable time delay between anatexis and lava extrusion indicates that radiometric ages of volcanics may provide misleading information on the timing of magma genesis occurring at depth. This highlights the pitfall of basing detailed geodynamic models on volcanic extrusion ages alone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
30.
Syrtis Major Planum is a volcanic plain dominated by lava flows. High resolution stereo camera (HRSC) images of the northern Syrtis Major region display erosional features such as grooves, teardrop-shaped islands and valleys. These landforms are characteristics of outflow channels seen on Mars, therefore implying that a flood event took place in this region. The flow of 100 km long and a few kilometer wide followed the local slopes in most locations. Maximum flood discharges estimated from images and topography vary from about 0.3×106 to 8×106 m3/s, and therefore are in the range of terrestrial mega-floods in the Scablands or Lake Bonneville. In North Syrtis Major, the relationships with surrounding lava flows and the timing of the flood coeval to Syrtis Major volcanic activity suggest that it could be related to the subsurface water discharge mobilized by the volcanic activity. The proximity of Noachian age basement rocks 20 km away from the flood and below lava flows might have played a role in its formation and water presence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号