首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   44篇
  国内免费   117篇
地球科学   520篇
  2024年   4篇
  2023年   5篇
  2021年   8篇
  2020年   7篇
  2019年   8篇
  2018年   12篇
  2017年   8篇
  2016年   7篇
  2015年   15篇
  2014年   11篇
  2013年   21篇
  2012年   26篇
  2011年   5篇
  2010年   12篇
  2009年   20篇
  2008年   16篇
  2007年   13篇
  2006年   27篇
  2005年   16篇
  2004年   19篇
  2003年   19篇
  2002年   20篇
  2001年   23篇
  2000年   10篇
  1999年   20篇
  1998年   31篇
  1997年   20篇
  1996年   21篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   18篇
  1991年   17篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
排序方式: 共有520条查询结果,搜索用时 0 毫秒
101.
It is revealed by CL images that there are multi-stage growth internal structures of zircons in the Huangtuling granulite, including the inherited zircons, protolith zircons, sector and planar zone zircons and retrograde zircons. In-situ trace element compositions and Pb-Pb ages have been analyzed by LAM-ICP-MS. The sector and the planar zone domains show typical trace element characteristics of granulite zircon (low Th, U, Th/U, total REEs, clear negative Eu anomalies, relatively depleted HREE and small differential degree between MREE and HREE, etc.), indicating that they formed during granulite-facies metamorphism. The protolith zircons have trace element characteristics of crustal zircon (high Th, U, Th/U, total REEs and enriched HREEs, etc.). 12 analyzed spots on granulite-facies domains give a weighted mean 207Pb/206Pb age of (2154±26) Ma (MSWD = 3.8), which is the best estimated age of granulite-facies metamorphism of this sample. The weighted mean 207Pb/206Pb age of 5 analyzed spots on protolith zircon domains is (2714 ± 22) Ma (MSWD = 1.4), which represents the protolith forming time. The discovery of ca. 3.4 Ga inherited zircon indicates that there are Palaeoarchean continental materials in this area. The interpretation of formation conditions and the ages of zircons can be constrained by simultaneous in-situ analysis of trace elements and ages.  相似文献   
102.
徐武家麻粒岩相糜棱岩   总被引:9,自引:1,他引:9       下载免费PDF全文
内蒙中部土贵乌拉南徐武家早前寒武纪麻粒岩地体中发育北东向韧性剪切带,其中发现有宽达5km 的麻粒岩相糜棱岩剖面,成分相当于紫苏辉长岩、钠质花岗岩和泥质岩的麻粒岩相糜棱岩出露齐全,保存完整。二辉斜长麻粒岩中紫苏辉石、斜长石、钾长石和透辉石斑晶普遍发育强烈的塑性形变;细粒重结晶相矿物组合 Hy+Di+Pl+Kf+Hb+Bi+Scap+Q 显示糜棱岩形成于麻粒岩相变质条件,二辉石矿物对给出温度 T=710℃。该糜棱岩带与麻粒岩相变辉长岩和地壳熔融型石榴子石花岗岩密切共生,这一事实既确证了韧性剪切带在麻粒岩变质过程中发育,为研究该区麻粒岩相岩带构造演化找到了一个构造标志,同时,也为深入探讨下地壳的实际构造过程,包括麻粒岩相条件下剪切形变发生的饥理以及克拉通化提供了地质实例。  相似文献   
103.
《International Geology Review》2012,54(10):1184-1202
Based on metamorphic studies of the Yadong high-pressure (HP) granulite and multiple thermochronological investigations of granitoids from both upper and lower parts, the Yadong section in the eastern Himalaya constrains the Cenozoic tectonic evolution of the Greater Himalayan Sequence (GHS). The Yadong HP granulite, located at the top of the GHS, underwent a peak-stage HP granulite facies metamorphism and two stages of retrograde metamorphism. Granulite and hornblende facies retrograde metamorphism took place at 48.5 and 31.8 Ma, respectively, marking the time of exhumation of the subducted Indian slab to lower and middle crustal levels. Subsequently, an average young zircon U–Pb age obtained from the Yadong HP granulite indicated that this unit was captured by its surroundings in a partially molten condition at 16.9 Ma. In addition, three granitoids from both the lower and the upper parts of the GHS yielded biotite 40Ar/39Ar ages of 11.0, 11.3, and 11.5 million years. These consistent ages suggest that the GHS along the Yadong section was laterally extruded and synchronously cooled to ~300°C at ~11.3 Ma. Furthermore, the granitic gneisses yield apatite fission track ages of ~7 million years, documenting the cooling of the GHS to ~110°C. A two-stage model describes the Cenozoic tectonic evolution of the GHS: (1) the Indian slab had subducted under Tibet before ~55 Ma, and was exhumed to the lower crust (50-40 km) at 48.5 Ma, and to the middle crust (22-15 km) at 31.8 Ma; and (2) the partial melting occurred at middle crustal levels during the period 31.8 to 16.9 Ma, causing channel flow. In the late stage, the GHS was laterally extruded by ductile mid-crustal flow during the period 16.9 to ~7 Ma, characterized by a fast cooling rate of ~2 mm per year.  相似文献   
104.
黄婉康  王明再  龚国洪  杜春辉  王岩国 《矿物学报》1994,14(3):247-256,T001
小莱河太古宙麻粒岩相铁建造的矿物组合有:①斜方辉石(Fs87)+钙铁辉石+石英+磁铁矿±莱河矿;②铁闪石+铁浅闪石质角闪石+石英+磁铁矿+碳酸盐±Fe-镁川石(云辉闪石)。辉石的出溶显示了它形成的不同阶段:片晶发育的OpxⅡ-CpxⅡ是最后稳定产物,计算的平衡温度是742℃,按相图获得的压力是7×108~7.8×108Pa;钙铁辉石中“001”片晶是易变辉石片晶转变的,Opx-Cpx-Pig(片晶)阶段据相图推测可能形成于近820℃,8×108Pa的条件下。原始均一相的OpxⅠ-CpxⅠ阶段矿物成分按估算的片晶含量计算,它们的形成温度接近820℃,可能的压力范围是11×108~13×108Pa。由此得到ITD型麻粒岩相p-T-t轨迹。莱河矿无氧化成因的证据,认为它是在麻粒岩相条件下生成的。云辉闪石的Si—O链重复周期是3×,其Fe/(Fe+Mg)=0.85,是接近富铁端元的Fe-镁川石,它与闪石一起在640到近700℃条件下交代了辉石。  相似文献   
105.
Compressional and shear wave velocities and attenuation measurements have been carried out in some of the borehole samples of acidic, basic and intermediate granulites of Mahabalipuram, Tamil Nadu, India. The results have been obtained at ambient conditions using ‘time-of-flight’ pulse transmission technique at 1.0 MHz frequency. The results show linear relationships between velocity and density, and velocity and attenuation properties of the rocks. The acidic granulites show lower velocities and higher attenuation than the intermediate and basic granulites. The average values of the Poisson’s ratio of acidic, intermediate and basic granulites have been found to be 0.210, 0.241 and 0.279 respectively. The variations in velocities and attenuation in these low porosity crystalline rocks are found to be strongly influenced by their mineral composition. The laboratory velocity data (extrapolated to high pressure) of the present study and the published field velocity data from deep seismic sounding studies indicate that these granulite facies rocks may belong to mid-crustal depths only.  相似文献   
106.
中国与蒙古之地质   总被引:26,自引:0,他引:26  
东昆仑中部缝合带清水泉一带发育石榴斜长紫苏麻粒岩、紫苏辉石黑云母石榴子石麻粒岩、石榴二辉斜长麻粒岩和石榴单斜辉石麻粒岩,它们与混合岩化黑云母石榴子石变粒岩、黑云母辉石变粒岩、石墨大理岩、含透辉石透闪石大理岩、透辉石大理岩、黑云斜长角闪岩和片麻岩等高级变质岩系以及纯橄岩、辉橄岩、橄长岩、辉长岩、辉绿岩和玄武岩等共同构成蛇绿混杂岩。麻粒岩相变质作用的温压条件为T=760~880℃,p=830~1200MPa,为高温中高压麻粒岩相变质作用,估算其形成深度为40~45km。麻粒岩相变质作用的SHRIMP锆石U-Pb年龄为(507·7±8·3)Ma。清水泉地区蛇绿岩形成于~520Ma,到~508Ma时俯冲至地下40~45km深处而发生中高压麻粒岩相变质作用,然后发生构造折返而剥露至地表。证实了清水泉高级变质岩和基性—超基性岩片是形成于早—中寒武世的蛇绿混杂岩,标志一个古生代早期的非常重要的板块汇聚边界,这对于进一步研究东昆仑造山带构造演化、乃至中国西部大地构造格局具有非常重要的意义。  相似文献   
107.
The Main Zone of the Hidaka Metamorphic Belt is an uplifted crustal section of island-arc type. The crust was formed during early Tertiary time, as a result of collision between two arc–trench systems of Cretaceous age. The crustal metamorphic sequence is divided into four metamorphic zones (I–IV), in which zone IV is in the granulite facies. A detailed study of the evolution of the Hidaka Belt, based on a revised P–T–t analysis of the metamorphic rocks, notably a newly found staurolite-bearing granulite, confirms a prograde isobaric heating path, after a supposed event of tectonic thickening of accretionary sedimentary and oceanic crustal rocks. During the peak metamorphic event (c. 53 Ma), the regional geothermal gradient attained 33–40° C km?1, and the highest P–T condition obtained from the lowest part of the granulite unit is 830° C, 7 kbar. In this part, XH2O of Gt–Opx–Cd gneiss is about 0.15 and that of Gt–Cd–Bt gneiss is 0.4. The P–T–XH2O condition of the granulite unit is well within a field where fluid-present partial melting of pelitic and greywacke metamorphic rocks takes place. This is in harmony with the restitic nature of the Gt–Opx–Cd gneiss in the lowest part of the granulite unit. The possibility that partial melting took place in the Main Zone is significant for the genesis of the peraluminous (S-type) granitic rocks within it. The S-type granitic rocks in this zone are Opx–Gt–Bt tonalite in the granulite zone, Gt–Cd–Bt tonalite in the amphibolite zone, and Cd–Bt–Mus tonalite in the Bt–Mus gneiss zone. The mineralogical and chemical nature of these strongly peraluminous tonalitic rocks permit them to be regarded as having been derived from S-type granitic magma generated by crustal anatexis of pelitic metamorphic rocks in deeper crust.  相似文献   
108.
青藏高原安多高压麻粒岩同位素年代学研究   总被引:1,自引:3,他引:1  
本文报道了聂荣微陆块中新发现的高压麻粒岩锆石U-Pb定年结果及其围岩花岗片麻岩中黑云母Ar-Ar同位素年代学结果.高压麻粒岩中的锆石可分为两类,第一类具有核-边显微结构,核部残留锆石具典型岩浆结晶锆石特征,锆石U-Pb年龄541±8Ma~ 834±11Ma;第二类锆石具典型的变质锆石成因的结构特征,锆石U-Pb谐和年龄为179.0±1.7Ma.花岗片麻岩中黑云母Ar-Ar坪年龄为166.7±1.1Ma.年代学资料显示麻粒岩与其围岩均具有泛非期的年龄信息,麻粒岩的原岩经历了晚元古代-早古生代造山作用,并于早-中侏罗世发生了峰期高压变质作用改造,该变质事件可能代表着聂荣微陆块与羌南板块的碰撞拼合.伴随着早-中侏罗世的岩浆作用,麻粒岩及其围岩迅速抬升,抬升的时间跨度在13Myr左右,于166.7Ma左右抬升至地壳浅层部位或近地表.  相似文献   
109.
In the Orlica‐?nie?nik complex at the NE margin of the Bohemian Massif, high‐pressure granulites occur as isolated lenses within partially migmatized orthogneisses. Sm–Nd (different grain‐size fractions of garnet, clinopyroxene and/or whole rock) and U–Pb [isotope dilution‐thermal ionization mass spectrometry (ID‐TIMS) single grain and sensitive high‐resolution ion microprobe (SHRIMP)] ages for granulites, collected in the surroundings of ?ervený D?l (Czech Republic) and at Stary Giera?tów (Poland), constrain the temporal evolution of these rocks during the Variscan orogeny. Most of the new ages cluster at c. 350–340 Ma and are consistent with results previously reported for similar occurrences throughout the Bohemian Massif. This interval is generally interpreted to constrain the time of high‐pressure metamorphism. A more complex evolution is recorded for a mafic granulite from Stary Giera?tów and concerns the unknown duration of metamorphism (single, short‐lived metamorphic cycle or different episodes that are significantly separated in time?). The central grain parts of zircon from this sample yielded a large spread in apparent 206Pb/238U SHRIMP ages (c. 462–322 Ma) with a distinct cluster at c. 365 Ma. This spread is interpreted to be indicative for variable Pb‐loss that affected magmatic protolith zircon during high‐grade metamorphism. The initiating mechanism and the time of Pb‐loss has yet to be resolved. A connection to high‐pressure metamorphism at c. 350–340 Ma is a reasonable explanation, but this relationship is far from straightforward. An alternative interpretation suggests that resetting is related to a high‐temperature event (not necessarily in the granulite facies and/or at high pressures) around 370–360 Ma, that has previously gone unnoticed. This study indicates that caution is warranted in interpreting U–Pb zircon data of HT rocks, because isotopic rejuvenation may lead to erroneous conclusions.  相似文献   
110.
Granulite facies anorthosites on Holsenøy Island in the Bergen Arcs region of western Norway are transected by shear zones 0.1–100 m wide characterized by eclogite facies assemblages. Eclogite formation is related to influx of fluid along the shears at temperatures of c. 700d?C and pressures in excess of 1.7 GPa. Combined carbon and nitrogen stable isotope, 40Ar/36Ar, trace-element and petrological data have been used to determine the nature and distribution of fluids across the anorthosite-eclogite transition. A metre-wide drilled section traverses the eclogitic centre of the shear into undeformed granulite facies garnet-clinopyroxene anorthosite. Clinozoisite occurs along grain boundaries and microcracks in undeformed anorthosite up to 1 m from the centre of the shear and clinozoisite increases in abundance as the edge of the shear zone is approached. The eclogite-granulite transition, marked by the appearance of sodic pyroxene and loss of albite, occurs within the most highly sheared section of the traverse. The jadeite-in reaction coincides with increased paragonite activity in mica. The separation between paragonite and clinozoisite reaction fronts can be semiquantitatively modelled assuming advective fluid flow perpendicular to the shear zone. The inner section of the traverse (0.25 m wide) is marked by retrogressive replacement of omphacite by plagioclase + paragonite accompanied by veins of quartz-phengite-plagioclase. C-N-Ar characteristics of fluid inclusions in garnet show that fluids associated with precursor granulite, eclogite and retrogressed eclogite are isotopically distinct. The granulite-eclogite transition coincides with a marked change in CO2 abundance and δ13C (<36ppm, δ13C=-2% in the granulite; <180 ppm, δ13C=-10% in the eclogite). The distribution of Ar indicates mixing between influxed fluid (40Ar/36Ar > 25 times 103) and pre-existing Ar in the granulite (40Ar/36Ar < 8 times 103). δ15N values decrease from +6% in the anorthosite to +3% within the eclogite shear. The central zone of retrogressed eclogite post-dates shearing and is characterised by substantial enrichment of Si, K, Ba and Rb. Fluids are CO2-rich (δ13C ~ -5%) with variable N2 and Ar abundances and isotopic compositions. Both Ar and H2O have penetrated the underformed granulite fabric more than 0.5m beyond the granulite/eclogite transition during eclogite formation. Argon isotopes show a mixing profile consistent with diffusion through an interconnecting H2O-rich fluid network. In contrast, a carbon-isotope front coincides with the deformation boundary layer, indicating that the underformed anorthosite was impervious to CO2-rich fluids. This is consistent with the high dihedral angle of carbonic fluids, and may be interpreted in terms of evolving fluid compositions within the shear zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号