首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   33篇
  国内免费   66篇
地球科学   299篇
  2024年   1篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   9篇
  2018年   4篇
  2017年   13篇
  2016年   9篇
  2015年   11篇
  2014年   15篇
  2013年   12篇
  2012年   15篇
  2011年   12篇
  2010年   13篇
  2009年   17篇
  2008年   17篇
  2007年   13篇
  2006年   12篇
  2005年   9篇
  2004年   6篇
  2003年   11篇
  2002年   10篇
  2001年   9篇
  2000年   12篇
  1999年   7篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
71.
白兰东  王绘 《四川测绘》2009,32(1):11-14
城镇地籍数据的有效分类与正确组织是地籍数据库规范建立和正常运行的前提条件。本文提出了基于地籍要素规则的分类方法,按照地籍数据的表达类型,描述了宗地背景图形数据、宗地图形数据、测量控制点数据、属性数据和档案数据的各个要素定义和编码规则。以成都市地籍数据库的建设为实例,根据各种来源的地籍数据分别开展了不同类型地籍数据的快速分类与入库工作。  相似文献   
72.
杨健  徐勋  刘洪波 《海洋与湖沼》2009,40(2):201-207
应用电感耦合等离子质谱仪分析技术分别研究了江苏太湖和洪泽湖水域大银鱼体内12种元素的生物积累特征.结果表明,两水域大银鱼体内元素含量的总体范围为:钙(Ca)9443-22150、钠(Na)1107-2418、镁(Mg)876.8-1231、钾(K)4662-9472、锌(Zn)74-135.8、锰(Mn)6.80-21.08、硒(Se)2.082-6.261、铜(Cu)0.489-2.704、铁(Fe)未检出-24.19、钻(Co)未检出-4.84、砷(As)0.123-0.587 mg,kg干重;镉(cd)未检出;必需元素丰富.太湖水域大银鱼中的Na、K、Cu、As、Se 的含量显著地高于洪泽湖水域大银鱼.而后者体内Ca、Mg、Zn的含量显著地高于前者.主成分分析显示出两水域鱼体多元素生物积累的整体"指纹"地理差异非常明显.在此基础上推导出了通过元素"指纹"来区分两地大银鱼个体的判别函数,正确率达100%.两水域大银鱼中毒性元素As和Cd的含量都远低于国家相应的限量标准.  相似文献   
73.
长江中下游地区下蜀黄土的物质来源一直是个热点问题。本文对江西九江下蜀黄土和甘肃临洮晚更新世以来黄土的常量元素组成进行了研究,并与末次间冰期以来黄土高原其它点位的黄土、长江中下游其它地点的下蜀黄土和长江沉积物的元素组成进行对比,以期探讨九江下蜀黄土的物质来源。结果表明:(1)九江下蜀黄土的地球化学元素以SiO2、Al2O3、Fe2O3为主。与临洮黄土的元素组成相比,九江下蜀黄土具有较高的SiO2、Al2O3、Fe2O3、TiO2含量和较低的CaO、MgO含量。(2)在空间上,下蜀黄土的SiO2/Al2O3比值未表现出黄土高原黄土(北方黄土)的SiO2/Al2O3比值随纬度规律性变化的特点,揭示下蜀黄土的主要源区可能不是北方的内陆荒漠或黄土高原。(3)TiO2/Al2O3-K2O/Al2O3和TiO2/Al2O3-Fe2O3/Al2O3图解显示下蜀黄土与北方黄土存在显著差异,进一步表明下蜀黄土与北方黄土的主要源区可能不同。  相似文献   
74.
Thirty four elements dissolved in water and 33 elements bound in particulate matter were analysed in the small river Saale (Thuringia, Germany, MQ=23 m3/s) in 1996 and the results were compared with those obtained in 1950 (44 elements). Monthly sampling was used to eliminate fluctuations caused by seasons and weather. Comparison of the element contents of a river over a 40-year-time span provides interesting insight into the anthropogenic change in the catchment area of the river with regard to „global change”.Without taking into consideration systematic errors, the analysed elements can be divided into three groups:
(a) Elements whose average annual analytical values in 1996 were lower by >50% than those in 1950: Al, As, Ba, Fe, Pb, Zn (in solution), and As, B, Cr, Li, Mn, Pb, Se, Sn, U (suspended).
(b) Elements whose average annual analytical values in 1996 are in the range of those in 1950, i.e., are within 50–150%: Ca, Co, Cr, F, K, Li, Mn, Na, Si, Sr, Ti, U (in solution), and Hg, Cr, Cu, Sc, Sr, Ti, Zn (suspended).
(c) Elements whose average annual analytical values in 1996 were higher by >150% than those in 1950: B, Cd, Mg, Ni, Rb, Sc (in solution), and Ba, Ni, P, Zr (suspended).
The increases in the element concentrations are not only caused by wastewater. Acid rain and fertilizer affect the pH and the electrolyte status of soils and cause mobilization of elements. This can be a reason for the increase in the alkalies and alkaline earth. For most elements are higher and lower values were found in 1996 and are only partly caused by systematic errors in the methods used in 1950. Taking into consideration of the natural fluctuations some element values 1996 equal or are lower (Tabelle 10 and 12). Because of the 100–200% RSD (12 samples per year), it is almost impossible to decide whether the deviations are due to analytical errors or to natural causes. The bound part of the elements is considered to be the suspended portion (seston=particulate matter) and, for one and the same element the suspended portion is equal or higher than the portion in solution. In the case of natural plant stock in the catchment area, the erosion is small. The increase in farming caused a higher soil erosion in the river. Storm precipitation causes short-term (1–2 h) peaks in the suspended load with values 2–3 orders of magnitude higher. In the case of monthly sampling, such peaks are unlikely to be detected. This produces values of suspended loads that tend to be too small. Increases of the bounded elements together with the elements in solution cause increases of eutrophication in the ocean.The contents of elements transported in solution and in particulate form in the river Saale are not equal to the element contents of the upper earth crust. Weathering and the fluviatil element transport cause a fractionation of the thallassophile (enriched in ocean) and therraphile elements (enriched in continents). Thallassophile elements are Mg, Ca, Sr, B, As, U, Sn, Cd, Zn, Se (transported in solution) and U, Cr, Li, B, Ba, Se, Mn, Cu, P, Sn, Cd, Rb, Pb, S and Zn (transported in seston) and therraphile elements are Cs, Co, Sc, Ni, Ti, Fe, Al, and K. As a result a fractionation in thallassophile and therraphile elements results and influences the geochemical cycles like magmatic differentiations.  相似文献   
75.
In this paper we show that thermodynamic forward modelling, using Gibbs energy minimisation with consideration of element fractionation into refractory phases and/or liberated fluids, is able to extract information about the complex physical and chemical evolution of a deeply subducted rock volume. By comparing complex compositional growth zonations in garnets from high-and ultra-high pressure samples with those derived from thermodynamic forward modelling, we yield an insight into the effects of element fractionation on composition and modes of the co-genetic metamorphic phase assemblage. Our results demonstrate that fractionation effects cause discontinuous growth and re-crystallisation of metamorphic minerals in high pressure rocks. Reduced or hindered mineral growth at UHP conditions can control the inclusion and preservation of minerals indicative for UHP metamorphism, such as coesite, thus masking peak pressure conditions reached in subducted rocks.Further, our results demonstrate that fractional garnet crystallisation leads to strong compositional gradients and step-like zonation patterns in garnet, a feature often observed in high-and ultra-high pressure rocks. Thermodynamic forward modelling allows the interpretation of commonly observed garnet growth zonation patterns in terms of garnet forming reactions and the relative timing of garnet growth with respect to the rock's pressure–temperature path. Such a correlation is essential for the determination of tectonic and metamorphic rates in subduction zones as well as for the understanding of trace element signatures in subduction related rocks. It therefore should be commonplace in the investigation of metamorphic processes in subduction zones.  相似文献   
76.
江西宁冈岩体的形成时代、地球化学特征及其构造意义   总被引:14,自引:1,他引:13  
沈渭洲  张芳荣  舒良树  王丽娟  向磊 《岩石学报》2008,24(10):2244-2254
宁岗岩体是湘赣交界部位呈南北向展布的加里东花岗岩带的重要组成部分,它主要由二长花岗岩组成。锆石LA-ICPMS U-Pb年龄为433.8±2.2Ma,属于加里东期岩浆活动产物。虽然宁冈岩体的SiO2含量变化明显(67.46%~74.85%),但它们的ACNK值都大于1.1,钾大于钠(K2O/Na2O=1.36~2.37),CaO/Na2O比值大于0.3,富集Rb、Th、Cs,亏损Nb、Ta、Ba、Sr,LREE富集 (LREE/HREE=5.8~12.2)和Eu亏损相对明显(δEu=0.28~0.61)。同时,它们还具有较低的εNd(t)值(-9.3~-8.6)、较高的(87Sr/86Sr)i值(0.71172~0.71937)和古老的Nd模式年龄(1838~1909Ma)。这些特征表明,宁冈岩体属于典型的壳源型花岗岩,很可能是在华夏古陆残块与扬子地块之间发生陆-陆碰撞拼贴而引发的地壳伸展-减薄的构造背景下, 通过砂质岩石部分熔融的方式形成。  相似文献   
77.
 When standard boundary element methods (BEM) are used in order to solve the linearized vector Molodensky problem we are confronted with two problems: (1) the absence of O(|x|−2) terms in the decay condition is not taken into account, since the single-layer ansatz, which is commonly used as representation of the disturbing potential, is of the order O(|x|−1) as x→∞. This implies that the standard theory of Galerkin BEM is not applicable since the injectivity of the integral operator fails; (2) the N×N stiffness matrix is dense, with N typically of the order 105. Without fast algorithms, which provide suitable approximations to the stiffness matrix by a sparse one with O(N(logN) s ), s≥0, non-zero elements, high-resolution global gravity field recovery is not feasible. Solutions to both problems are proposed. (1) A proper variational formulation taking the decay condition into account is based on some closed subspace of co-dimension 3 of the space of square integrable functions on the boundary surface. Instead of imposing the constraints directly on the boundary element trial space, they are incorporated into a variational formulation by penalization with a Lagrange multiplier. The conforming discretization yields an augmented linear system of equations of dimension N+3×N+3. The penalty term guarantees the well-posedness of the problem, and gives precise information about the incompatibility of the data. (2) Since the upper left submatrix of dimension N×N of the augmented system is the stiffness matrix of the standard BEM, the approach allows all techniques to be used to generate sparse approximations to the stiffness matrix, such as wavelets, fast multipole methods, panel clustering etc., without any modification. A combination of panel clustering and fast multipole method is used in order to solve the augmented linear system of equations in O(N) operations. The method is based on an approximation of the kernel function of the integral operator by a degenerate kernel in the far field, which is provided by a multipole expansion of the kernel function. Numerical experiments show that the fast algorithm is superior to the standard BEM algorithm in terms of CPU time by about three orders of magnitude for N=65 538 unknowns. Similar holds for the storage requirements. About 30 iterations are necessary in order to solve the linear system of equations using the generalized minimum residual method (GMRES). The number of iterations is almost independent of the number of unknowns, which indicates good conditioning of the system matrix. Received: 16 October 1999 / Accepted: 28 February 2001  相似文献   
78.
 The partitioning of Mg and Fe between magnesiowüstite and ringwoodite solid solutions has been measured between 15 and 23 GPa and 1200–1600 C using both Fe and Re capsule materials to vary the oxidation conditions. The partitioning results show a clear dependence on the capsule material used due to the variation in Fe3+ concentrations as a consequence of the different oxidation environments. Using results from experiments performed in Fe capsules, where metallic Fe was also added to the starting materials, the difference in the interaction parameters for the two solid solutions (W FeMg mwW FeMg ring) is calculated to be 8.5±1 kJ mol−1. Similar experiments performed in Re metal capsules result in a value for W FeMg mwW FeMg ring that is apparently 4 kJ higher, if all Fe is assumed to be FeO. Electron energy-loss near-edge structure (ELNES) spectroscopic analyses, however, show Fe3+ concentrations to be approximately three times higher in magnesiowüstite produced in Re capsules than in Fe capsules and that Fe3+ partitions preferentially into magnesiowüstite, with K D Fe3+ ring/mw estimated between 0.1 and 0.6. Using an existing activity composition model for magnesiowüstite, a least–squares fit to the partitioning data collected in Fe capsules results in a value for the ringwoodite interaction parameter (W FeMg ring) of 3.5±1 kJ mol−1. The equivalent regular interaction parameter for magnesiowüstite (W FeMg mw) is 12.1±1.8 kJ mol. These determinations take into account the Fe3+ concentrations that occur in both phases in the presence of metallic Fe. The free energy change in J mol−1 for the Fe exchange reaction can be described, over the range of experimental conditions, by 912 + 4.15 (T−298)+18.9P with T in K, P in kbar. The estimated volume change for this reaction is smaller than that predicted using current compilations of equation of state data and is much closer to the volume change at ambient conditions. These results are therefore a useful test of high pressure and temperature equation of state data. Using thermodynamic data consistent with this study the reaction of ringwoodite to form magnesiowüstite and stishovite is calculated from the data collected using Fe capsules. Comparison of these results with previous studies shows that the presence of Fe3+ in phases produced in multianvil experiments using Re capsules can have a marked effect on apparent phase relations and determined thermodynamic properties. Received: 13 September 2000 / Accepted: 25 March 2001  相似文献   
79.
This paper is concerned with the vibration isolation efficiency analysis of total or partially buried thin walled wave barriers in poroelastic soils. A two-dimensional time harmonic model that treats soils and structures in a direct way by combining appropriately the conventional Boundary Element Method (BEM), the Dual BEM (DBEM) and the Finite Element Method (FEM) is developed to this aim. The wave barriers are impinged by Rayleigh waves obtained from Biot’s poroelasticity equations assuming a permeable free-surface. The suitability of the proposed model is justified by comparison with available previous results. The vibration isolation efficiency of three kinds of wave barriers (open trench, simple wall, open trench-wall) in poroelastic soils is studied by varying their geometry, the soil properties and the frequency. It is found that the efficiency of these wave barriers behaves similarly to these in elastic soils, except for high porosities and small dissipation coefficients. The efficiency of open trench-wall barriers can be evaluated neglecting their walls if they are typical sheet piles. This does not happen with walls of bigger cross-sections, leading in general to efficiency losses. Likewise, increasing the burial depth to trench depth ratio has a negative impact on the efficiency.  相似文献   
80.
赵永红  王航  邓凯  李小凡 《岩石学报》2016,32(7):2217-2224
三峡工程是迄今为止最大的水利工程,对库区滑坡灾害的监测和机制研究一直是重要的研究课题。本文利用Terra SAR-X的强度图进行相关计算,求解出2009年5月20日至8月5日期间三峡树坪滑坡的形变场。该形变场特征和树坪滑坡体的地形特征吻合甚好,位移大小、方向和三峡大学对滑坡体的野外观测结果基本吻合。以此高精度位移场为外部约束,结合野外观测资料对滑坡体介质力学性质进行分类并选取边界条件,利用有限元方法对滑坡活动进行动力学计算模拟。计算过程中对滑坡体的滑动面形状、因降雨引起材料参数变化和三峡水库水位等因素分别反演和调整,得出符合其变形和发展过程的滑坡动力学特征。发现软弱带的物性参数决定滑坡体总体滑动量,滑坡体的物性参数决定位移分布的峰值位置。在确定了滑坡动力学特征之后,进一步讨论降雨和库区水位下降对滑坡产生的贡献权重,得出降雨是树坪滑坡的决定因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号