首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1248篇
  免费   207篇
  国内免费   482篇
地球科学   1937篇
  2024年   12篇
  2023年   41篇
  2022年   42篇
  2021年   45篇
  2020年   71篇
  2019年   63篇
  2018年   52篇
  2017年   75篇
  2016年   49篇
  2015年   58篇
  2014年   114篇
  2013年   94篇
  2012年   98篇
  2011年   105篇
  2010年   79篇
  2009年   83篇
  2008年   103篇
  2007年   84篇
  2006年   95篇
  2005年   76篇
  2004年   72篇
  2003年   60篇
  2002年   42篇
  2001年   36篇
  2000年   30篇
  1999年   41篇
  1998年   37篇
  1997年   34篇
  1996年   21篇
  1995年   21篇
  1994年   19篇
  1993年   17篇
  1992年   22篇
  1991年   16篇
  1990年   10篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1937条查询结果,搜索用时 0 毫秒
71.
用磁力浮沉子密度测量装置,在15 ~25 ℃之间的三个温度下测定了珠江口20 个水样的密度。结果表明,测定值皆高于相应条件下国际标准海水状态方程的计算值,在海水盐度范围0.08~33 .446 ,密度平均偏差范围为2 .4 ~54.0 ×10 - 3kg/m3 。测定密度和计算密度的偏差随盐度的降低而增大,与盐度的变化成直线相关:与(Ca2 + )/S、SO42 - /S比和比碱度之间皆呈指数曲线相关。珠江口水样(Ca2 + )/C1 、SO42 - /C1 和比碱度平均值分别超出大洋水平均值17 .8 % 、8 .21 % 和152 % ,其余的Na + /C1、K+ /C1 和Sr2 + /C1 比值与大洋水无明显差别,基本类同。珠江口海水的高碱度、高(Ca2 + )/C1 和高SO42 - /C1 是造成其海水密度正偏差的主要因素。经计算机拟合,首次导出了珠江口海水密度的状态方程,该方程计算值与实验值的平均标准偏差为±2.5×10- 3kg/m3 。  相似文献   
72.
离线固相萃取螯合富集分离-ICP-MS测定海水中的稀土元素   总被引:1,自引:0,他引:1  
通过测定条件优化、方法比对等实验建立了一种固相萃取小柱离线螯合富集分离电感耦合等离子体质谱仪测定海水中稀土元素的方法。海水样品通过调节p H后,进入VAC ELUT SPS24 Agilent圆形固相萃取装置,其主要基体物质的去除率高于97%;萃取富集的优化条件是海水样品p H 4.0~7.0,海水进入萃取柱速率2 m L/min,硝酸洗脱液浓度为1 mol/L;方法对稀土元素的加标回收率为83%~108%,14种稀土元素的检出限为0.057~0.613 ng/L,RSD10%;该方法与氢氧化铁共沉淀法富集稀土元素比对测定结果一致,方法具有准确度与精密度高、操作简便快速等优点,可用于海水样品中稀土元素的定量精确测量。  相似文献   
73.
Abstract

We investigate the general methodology for an intensive development of coastal aquifers, described in a companion paper, through its application to the management of the Akrotiri aquifer, Cyprus. The Zakaki area of that aquifer, adjacent to Lemessos City, is managed such that it permits a fixed annual agricultural water demand to be met, as well as and a fraction of the water demand of Lemessos, which varies according to available surface water. Effluents of the Lemessos wastewater treatment plant are injected into the aquifer to counteract the seawater intrusion resulting from the increased pumping. The locations of pumping and injection wells are optimized based on least-cost, subject to meeting the demand. This strategy controls sea intrusion so effectively that desalting of only small volumes of slightly brackish groundwater is required over short times, while ~2.3 m3 of groundwater is produced for each 1 m3 of injected treated wastewater. The cost over the 20-year period 2000–2020 of operation is ~40 M€ and the unit production cost of potable water is under 0.2 €/m3. The comparison between the deterministic and stochastic analyses of the groundwater dynamics indicates the former as conservative, i.e. yielding higher groundwater salinity at the well. The Akrotiri case study shows that the proposed aquifer management scheme yields solutions that are preferable to the widely promoted seawater desalination, also considering the revenues from using the treated wastewater for irrigation.

Citation Koussis, A. D., Georgopoulou, E., Kotronarou, A., Mazi, K., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., Ioannou, C., Georgiou, A., Schwartz, J. & Zacharias, I. (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol. Sci. J. 55(7), 1234–1245.  相似文献   
74.
Abstract

Little is known about the salt intrusion behaviour in Malaysian estuaries. Study of salt intrusion generally requires large amounts of data, especially if 2-D or 3-D numerical models are used; thus, in data-poor environments, 1-D analytical models are more appropriate. A fully analytical 1-D salt intrusion model, which is simple to implement and requires minimal data, was tested in six previously unsurveyed Malaysian estuaries (Kurau, Perak, Bernam, Selangor, Muar and Endau). The required data can be collected during a single day of observations. Site measurements were conducted during the dry season (June–August 2012 and February–March 2013) near spring tide. Data on cross-sections (by echo-sounding), water levels (by pressure loggers) and salinity (by moving boat) were collected as model input. A good fit was demonstrated between the simulated and observed salinity distribution for all six estuaries. Additionally, the two calibration parameters (the Van der Burgh coefficient and the boundary condition for the dispersion) were compared with the existing predictive equations. Since gauging stations were only present in some nested catchments in the drainage basins, the river discharge had to be up-scaled to represent the total discharge contribution of the catchments. However, the correspondence between the calibration coefficients and the predictive equations was good, particularly in view of the uncertainty in the river discharge data used. This confirms that the predictive salt intrusion model is valid for the cases studied in Malaysia. The model provides a reliable, predictive tool, which the water authority of Malaysia can use for making decisions on water abstraction or dredging.
Editor D. Koutsoyiannis; Associate editor A. Fiori  相似文献   
75.
Once a mafic intrusive rock has become altered, it is generally difficult to obtain a reliable intrusion age using conventional isotopic dating methods. To overcome this problem, this study used zircon fission track (ZFT) thermochronometry to determine the timing of crystallization of altered mafic intrusions. ZFT dating was carried out on samples of baked granite country rock adjacent to dolerite dikes (5–10 m thick) in the Takato area of central Japan. Three granite samples collected within 8 mm of a dike contact yielded consistent ZFT ages of 17–16 Ma, with confined track lengths indicative of the complete annealing of pre‐existing tracks by reheating due to dike intrusion. An older ZFT age was obtained for one granite sample collected within 20 mm of the contact, but confined track length measurements indicate that this is an incompletely reset age that lies between the ZFT age of the unbaked granitic country rocks (ca. 55 Ma) and the emplacement age of the dike. Petrographic examinations suggest that post‐intrusion hydrothermal activity did not influence the ZFT ages. We conclude that the 17–16 Ma ZFT age represents the emplacement age of the dikes. Our results show that ZFT dating of baked country rock is an effective tool for dating altered mafic intrusions, for which other dating techniques are not applicable. In the eastern part of Southwest Japan, dispersed volcanic activity occurred in the late Early to early Middle Miocene (18–15 Ma), and the volcanic belt extended into the forearc. This pulse of activity was possibly related to the injection of asthenospheric material into the trench‐side mantle wedge beneath the Japan arc. We also present young apatite fission track ages (ca. 4 Ma) that may reflect a Middle Miocene or later thermal event associated with local magmatic activity near the Takato area.  相似文献   
76.
L’aquifère libre de la Chaouia côtière constitue un exemple des aquifères les plus exploités au Maroc. Ce travail est consacré à l’étude des processus de la salinisation des eaux souterraines par l’analyse physico-chimique de 39 puits répartis dans la zone. Deux types de faciès ont été révélés, l’un est chloruré-sodique dans la frange côtière ; l’autre faciès est de type chloruré bicarbonaté-calcique caractérisant les eaux exploitées dans les calcaires marneux du Crétacé. L’influence marine (aérosols et intrusion marine), la dissolution/précipitation de la roche aquifère et l’infiltration des eaux d’irrigation, sont parmi les causes de l’augmentation de la salinité des eaux souterraines, en plus de l’exploitation excessive de l’eau souterraine.  相似文献   
77.
Carbon isotopic composition of marine carbonates is a record for various important geological events in the process of earth development and evolution. The carbonates of Carboniferous, Permian and Triassic, as the transition from Paleozoic to Mesozoic-Cenozoic have very high 13C value. Taking this as the main point, and combined with the oxygen, strontium isotopic composition in carbonates, distribution of carbonate basin area through geologic time, the correlation of carbon isotopic composition of marine carbonates to sea level change, organic carbon burial flux, exchange of CO2 content in atmosphere and ocean, and long cycle evolution of the earth ecosystems were approached. The results are shown as follows: ①The interval of 13C >3‰ during Phanerozoic was concentrated in Carboniferous, Permian and the beginning of Triassic, but the beginning of Triassic was characterized by higher frequency and larger fluctuations in 13C value during a short time, whereas the Carboniferous-Permian presented a continuously stable high 13C value, indicating a larger amount of organic carbon accumulation in this time interval. Relatively high 18O values during this time was also observed, showing a long time of glaciations and cold climate, which suggest a connection among rapid organic carbon burial, cold climate, as well as pCO2 and pO2 states of atmosphere. ②The over consumption of atmosphere CO2 by green plants during the time with high 13C of seawater forced CO2 being transferred from ocean to atmosphere for the balance, but the decrease in the seawater amount and water column pressure caused by the global cooling could weaken dissolution capacity of CO2 in seawater and carbon storage of marine carbonates, and also reduce the carbonate sedimentary rate and decrease the carbonate basin area globally from Devonian to Carboniferous and Permian. During the middle-late Permian carbonate was widely replaced by siliceous sediments even though in shallow carbonate platform, which resulted in the decrease of marine invertebrates, suggesting the Permian chert event should be global. ③The Phanerozoic 87Sr/86Sr trend of seawater showed a sharp fall in Permian and drop to a minimum at the end of the Permian, indicting input of strontium from the submarine hydrothermal systems (mantle flux). Such process should accompany with a supplement of CO2 from deep earth to atmosphere and ocean system, but the process associated with widespread volcanism and rises of earth’s surface temperature pricked up the mass extinction during the time of end Permian. ④Cold climate and increase of continental icecap volume, the amalgamation of northern Africa and Laurentia continentals were the main reasons responsible for the sea level drop, but the water consumption result from the significantly increased accumulation of organic carbon should also be one of the reasons for the sea level drop on the order of tens of meters. ⑤The mass extinction at the end Permian was an inevitable event in the process of earth system adjustment. It was difficult for marine invertebrates to survive because of the continuously rapid burial of organic carbon, and of the decrease of sea water amount and its dissolution ability to CO2. At last, at the end of Paleozoic, the supplement of CO2 to atmosphere and ocean by widely magma activities resulted in a high temperature of earth surface and intensified mass extinction.  相似文献   
78.
The strong species of cadmium(II), copper(II), manganese(II) and nickel(II) in an Antarctic seawater sample are investigated by a method based on the sorption of metal ions on complexing resins. The resins compete with the ligands present in the sample to combine with the metal ions. Two resins with different adsorbing strengths were used. Very stable metal complexes were investigated with the strong sorbent Chelex 100 and weaker species with the less strong resin, Amberlite CG-50. Strong species were detected for three of the considered metal ions, but not for Mn(II). Cu(II) is completely linked to species with a side reaction coefficient as high as log αM(I) = 11.6 at pH = 7.3. The ligand concentration was found to be similar to that of the metal ion, and the conditional stability constant was around 1020 M− 1. In the considered sample, only a fraction of the metal ions Cd(II) and Ni(II) is bound to the strong ligands, with side reaction coefficients equal to log αM(I) = 5.5 and 6.5 at pH = 7.3 for Cd(II) and Ni(II), respectively. These findings were confirmed by the test with the weaker sorbent Amberlite CG-50. It can be calculated from the sorption equilibria that neither Mn(II) nor Ni(II) is adsorbed on Amberlite CG-50 under the considered conditions and, in fact, only a negligible fraction of Mn(II) and Ni(II) was adsorbed. A noticeable fraction of Cd(II) was adsorbed on Amberlite CG-50, meaning that cadmium(II) is partially linked to weak ligands, possibly chloride, while no copper(II) was adsorbed on this resin, confirming that copper(II) is only combined in strong species. These results are similar, but not identical, to those obtained for other seawater samples examined in previous investigations.  相似文献   
79.
Deep seawater in the ocean contains a great deal of nutrients. Stommel et al. have proposed the notion of a “perpetual salt fountain” (Stommel et al., 1956). They noted the possibility of a permanent upwelling of deep seawater with no additional external energy source. If we can cause deep seawater to upwell extensively, we can achieve an ocean farm. We have succeeded in measuring the upwelling velocity by an experiment in the Mariana Trench area using a special measurement system. A 0.3 m diameter, 280 m long soft pipe made of PVC sheet was used in the experiment. The measured data, a verification experiment, and numerical simulation results, gave an estimate of upwelling velocity of 212 m/day. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
80.
For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios.Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times.Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on (Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against and D, the conditions LI/L<1,EX/L<1 (EX is the tidal excursion) alongside the Simpson-Hunter criteria D/U3<50 m−2 s3. This zone encompasses 24 out of 25 `randomly' selected UK estuaries.However, the length of saline intrusion in a funnel-shaped estuary is also sensitive to axial location. Observations suggest that this location corresponds to a minimum in landward intrusion of salt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s−1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients).These dynamical solutions are coupled with further generalised theory related to depth and time-mean, suspended sediment concentrations (as functions of and D). Then, by assuming the transport of fine marine sediments approximates that of a dissolved tracer, the rate of estuarine supply can be determined by combining these derived mean concentrations with estimates of flushing time, FT, based on LI. By further assuming that all such sediments are deposited, minimum times for these deposition rates to in-fill estuaries are determined. These times range from a decade for the shortest, shallowest estuaries to upwards of millennia in longer, deeper estuaries with smaller tidal ranges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号