首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   37篇
  国内免费   55篇
地球科学   480篇
  2022年   2篇
  2021年   7篇
  2020年   10篇
  2019年   10篇
  2018年   13篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   8篇
  2013年   30篇
  2012年   12篇
  2011年   15篇
  2010年   18篇
  2009年   18篇
  2008年   19篇
  2007年   19篇
  2006年   24篇
  2005年   20篇
  2004年   16篇
  2003年   22篇
  2002年   16篇
  2001年   6篇
  2000年   35篇
  1999年   21篇
  1998年   17篇
  1997年   10篇
  1996年   9篇
  1995年   11篇
  1994年   9篇
  1993年   7篇
  1992年   5篇
  1991年   12篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1978年   1篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
21.
论述了张北MS6.2、沈阳ML4.1、内蒙古ML5.9、日本北海道MS8.0、俄蒙中交界MS7.9、青海昆仑山MS8.1地震前后,锦州地震台体积式钻孔应变仪观测震前异常的变化规律。通过计算潮汐因子、振幅因子、3点线性平滑滤波残差值等方法,识别异常。结果表明,体应变异常资料与地震有一定的相关性。  相似文献   
22.
Whilst much attention has been given to models that describe wave, tide and sediment transport processes in sufficient detail to determine the local changes in bed level over a relatively detailed representation of the bathymetry, far less attention has been given to models that consider the problem at a much larger scale (e.g. that of geomorphological elements such as a tidal flat and tidal channel). Such aggregated or lumped models tend not to represent the processes in detail but rather capture the behaviour at the scale of interest. One such model developed using the concept of an equilibrium concentration is the Aggregated Scale Morphological Interaction between Tidal basin and Adjacent coast (ASMITA). In this paper we provide some new insights into the concepts of equilibrium, and horizontal and vertical exchange that are key components of this modelling approach. In a companion paper, we summarise a range of developments that have been undertaken to extend the original model concept, to illustrate the flexibility and power of the conceptual framework. However, adding detail progressively moves the model in the direction of the more detailed process-based models and we give some consideration to the boundary between the two.  相似文献   
23.
Abstract

The flow of a two-layer flow in a rotating channel on an f-plane over topography with sinusoidal variation of height in a direction parallel to the flow is investigated. When the two layers flow in opposite directions a resonance is found when the topographic scale matches the free mode of the system. We examine the stability of the forced mode in the vicinity of this resonance by means of a perturbation expansion of the topographic height. Both subresonant and super-resonant instabilities are found and their equilibration is examined. For small values of the dissipation multiple equilibria are found. The topographic drag releases potential energy even when the flow is baroclinically stable.  相似文献   
24.
25.
26.
27.
28.
The lunar barometric tide has been determined with reasonable accuracy, on an annual and seasonal basis, at five stations on the mainland of New Zealand and at three of the outlying islands. The determinations show that in the New Zealand region the lunar tide has a larger amplitude and smaller phase than might have been expected from previously available southern-hemisphere results. In general, the seasonal variation of phase in the New Zealand region conforms to the currently recognised global pattern, with the J-season phase greater than that of the D-season. Similarly, the amplitude variation tends to support the suggestion that, south of latitude 30°S, the D-season amplitude is greater than that of the J-season. Approximate tests are introduced and used to assess the statistical significance of some of the apparent differences in amplitude and phase made evident by the analysis. These assessments indicate that although many of the apparent differences may be attributed to sampling fluctuations, the main regional anomalies in amplitude and phase are likely to be real. It is suggested that these anomalies may indicate a significant regional input of tidal energy to the atmosphere (at the lower boundary) from the Pacific oceanic tide.  相似文献   
29.
30.
Planetary waves in coupling the lower and upper atmosphere   总被引:1,自引:1,他引:1  
The purpose of the paper is to answer the question if planetary waves (PW) are capable of propagating into the thermosphere. First the simplest vertical structure equation of the classic tidal theory accounting for a realistic vertical temperature profile is considered. Analysis and simulation show that the well-known normal atmospheric modes (NM), which are trapped in the lower and middle atmosphere, exhibit a wave-like vertical structure with a large vertical wavelength in the thermosphere. Moreover, the reflection of these modes from the vertical temperature gradient in the lower thermosphere causes appearance of the wave-energy upward flux in the middle atmosphere, and in a linearized formulation this flux is constant above the source region. To investigate a possibility of the NM forcing by stratospheric vacillations and to consider the propagation of different PW up to the heights of the upper thermosphere, a set of runs with a mechanistic Middle and Upper Atmosphere Model has been performed. The results of the simulation show that quasi-stationary and longer-period PW are not able to penetrate into the thermosphere. The shorter-period NM and ultra-fast Kelvin wave propagate up to the heights of the lower thermosphere. However, above about 150 km they are strongly suppressed by dissipative processes. The role of the secondary waves (nonmigrating tides) arising from nonlinear interaction between the primary migrating tides and quasi-stationary PW is discussed. We conclude that PW are not capable of propagating directly up to the heights of the ionospheric F2 region. It is suggested that other physical processes (for instance, the electrostatic field perturbations) have to be taken into account to explain the observed PW-like structures in ionospheric parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号