首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3919篇
  免费   463篇
  国内免费   671篇
地球科学   5053篇
  2024年   36篇
  2023年   90篇
  2022年   132篇
  2021年   166篇
  2020年   247篇
  2019年   196篇
  2018年   224篇
  2017年   286篇
  2016年   214篇
  2015年   269篇
  2014年   385篇
  2013年   495篇
  2012年   364篇
  2011年   184篇
  2010年   164篇
  2009年   156篇
  2008年   137篇
  2007年   167篇
  2006年   123篇
  2005年   131篇
  2004年   91篇
  2003年   100篇
  2002年   123篇
  2001年   87篇
  2000年   53篇
  1999年   45篇
  1998年   63篇
  1997年   47篇
  1996年   38篇
  1995年   50篇
  1994年   50篇
  1993年   23篇
  1992年   29篇
  1991年   22篇
  1990年   21篇
  1989年   8篇
  1988年   9篇
  1987年   16篇
  1986年   6篇
  1985年   5篇
  1954年   1篇
排序方式: 共有5053条查询结果,搜索用时 0 毫秒
131.
The recently discovered Zhuxi W–Cu ore deposit is located within the Taqian–Fuchun Ore Belt in the southeastern edge of the Yangtze Block, South China. Its inferred tungsten resources, based on new exploration data, are more than 280 Mt by 2016. At least three paragenetic stages of skarn formation and ore deposition have been recognized: prograde skarn stage; retrograde stage; and hydrothermal sulfide stage. Secondly, greisenization, marmorization and hornfels formation are also observed. Scheelite and chalcopyrite are the dominant metal minerals in the Zhuxi deposit and their formation was associated with the emplacement of granite stocks and porphyry dykes intruded into the surrounding Carboniferous carbonate sediments (Huanglong and Chuanshan formations) and the Neoproterozoic slate and phyllites. The scheelite was mostly precipitated during the retrograde stage, whereas the chalcopyrite was widely precipitated during the hydrothermal sulfide stage. A muscovite 40Ar/39Ar plateau age of about 150 Ma is interpreted as the time of tungsten mineralization and molybdenite Re–Os model ages ranging from 145.9 ± 2.0 Ma to 148.7 ± 2.2 Ma (for the subsequent hydrothermal sulfide stage of activity) as the time of the copper mineralization. Our new molybdenite Re–Os and muscovite 40Ar/39Ar dating results, along with previous zircon U–Pb age data, indicate that the hydrothermal activity from the retrograde stage to the last hydrothermal sulfide stage lasted up to 5 Myr, from 150.6 ± 1.5 to 145.9 ± 1 Ma, and is approximately coeval or slightly later than the emplacement of the associated granite porphyry and biotite granite. The new ages reported here confirm that the Zhuxi tungsten deposit represents one of the Mesozoic magmatic–hydrothermal mineralization events that took place in South China in a setting of lithospheric extension during the Late Jurassic (160–150 Ma). It is suggested that mantle material played a role in producing the Zhuxi W–Cu mineralization and associated magmatism.  相似文献   
132.
The Cenomanian–Turonian Boundary Event (CTBE) event is not associated with a transgression on the southern margin of the Subalpine Basin, but with a steady shallowing-up trend beginning in the lower half of the δ13C positive shift. The SW–NE Rouaine Fault had a complex role, first in isolating a black shale basin to the west and a large, deep submarine plateau devoid of black shale to the east, then by a strike-slip movement that induced a forced progradation to the north of the southern platform in the eastern compartment. This compressive tectonic reactivation of the southern margin began around the deposition of the local equivalent of the Plenus bed of boreal basins, as shown by correlation supported by both isotope and palaeontological data. Other local data are pieced together to suggest that the whole of SE France underwent a short-lived transpressive tectonic pulse around the Cenomanian–Turonian boundary, probably connected with the early compressive movement of Africa vs. Europe. On a larger scale, other published data suggest that this pulse could be a global one. It is coeval with renewed thrust loading, volcanism and transgression in the North-American Western Interior, local emergences during the event along the eastern Atlantic margin, suggesting a slight tendency to inversion of the margin, and a tilting to the east of the North-Africa plate that could explain the large transgression recorded from Morocco to Tunisia on the Saharan Craton.New isotope and palaeontological (coiling ratio of Muricohedbergella delrioensis) data from SE France suggest that two coolings of suprabasinal importance occurred just before and during the build-up of the d13C shift, including the boreal “Plenus Marls“, especially its middle limestone bed and its SE France equivalent.Regarding the extinction of the genus Thalmaninella and Rotalipora and during the event, neither anoxia nor climate changes can fully explain the palaeontological crisis, given that Rotalipora cushmani crosses the first phase of anoxia without harm, as well as the two coolings, not only in SE France but on a large scale, as shown by the correlation of the published data. This extinction needs alternative explanations as we challenge both anoxia and climate as major causes.  相似文献   
133.
Zircon U–Pb dates for felsic and intermediate to mafic dikes intruding into the Ryoke granitoids and metamorphic rocks at selected outcrops in the Takamiyama area of the eastern Kii Peninsula, southwest Japan, were determined along with their geology and petrography to reveal the history of Cretaceous magmatism. At each outcrop, the felsic and intermediate to mafic dikes exhibit specific structures that are indicative of magma intermingling and have coeval intrusion ages of ca. 81–77 Ma. Our zircon U–Pb data complement previously published data, suggesting that the mafic magmatism continued intermittently from 83 to 76 Ma in the Takamiyama area and that magmatism migrated eastward within the Ryoke Belt. A comparison of intrusion ages between a dike and a host Ryoke granitoid at one outcrop indicates that the host rock experienced ductile deformation at ~88 to ~83 Ma. Judging from the small number of zircons and the concordant date distributions, we didn't recognize the evidence suggesting the partial melting of the host rocks, as Nakajima et al. (Journal of the Geological Society of Japan, 2021, 127, 69–78) reported.  相似文献   
134.
孙若昧  刘福田 《地球物理学报》1995,38(05):599-607,694
用1984-1991年发生在京津唐地区(37°-41°N,112.5°-120°E)的2505个地震的22234条P波到时进行的层析成像,揭示了地震活动性与速度图像间的联系:1.公元1000年以来该区强震震中在上地壳的投影大多分布在高速块体内或高速块体与低速块体相交地带,偏高速体的一侧.2.唐山地震和三河-平谷地震所处的构造背景相似,均未依傍大断层,处在介质速度变化剧烈部位.3.宁河与唐山、滦县分别位于规模大小、位置深浅不同的两个不同的高速块体处,可以解释唐山地震序列震源深度分布东北浅西南深的总体特征.4.唐山地震可能是由一条北西向的地下隐伏断层扩展的结果.  相似文献   
135.
应急避难场所在城市应急管理体系中占有重要地位,对已建成的应急避难场所选址进行评价,可为应急避难场所个体改进、布局优化和新建选址提供依据。本文在文献研究与天津市城市特点分析的基础上,从有效性、安全性、可达性3个维度构建包含8个评价因子的应急避难场所选址适宜性评价指标体系,应用层次分析法(AHP)确定指标权重。应用GIS空间分析技术建立应急避难场所空间点位分析模型和覆盖范围模型,对天津市27个应急避难场所进行适宜性评价,并对中心城区14个应急避难场所进行满足性评价。结果表明,天津市应急避难场所具有良好的基础,但总体适宜性水平有待进一步提高,尤其是安全性亟需加强;天津市中心城区人口密集,但应急避难场所数量少,服务区域有限,存在较大范围的覆盖盲区,其中和平区人均有效避难面积仅0.2m2,远小于人体最低占用面积0.6m2,达不到人均有效避难要求。  相似文献   
136.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   
137.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
138.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   
139.
Multiple ridges across prograding coasts may display variable geometries, commonly expressed through varying elevations. Changes in ridge elevation have been traditionally related to the occurrence of fluctuating progradation rates, which might, in turn, be driven by shifting environmental conditions. Here, we explore the geometry and growth mechanisms of multiple ridges, generated at Barreta Island (Ria Formosa, southern Portugal), as a consequence of the rapid progradation of the island over the last 70 years, following the artificial fixation of the downdrift Faro-Olhão inlet with jetties in 1955. The variability in the morphology of these features was analysed in combination with available wind and wave data, in order to better distinguish growth mechanisms and understand the main parameters determining the final geometry of the observed ridges. The results suggest that (1) most of the identified ridges fall in the beach ridge classification, as they have been mostly built by marine processes, and (2) the parameters derived from, or closely related to wave climate variability (e.g. progradation rates, storm occurrence) can jointly explain most of the observed morphological changes, while aeolian processes played a secondary role. Indeed, ridge geometry appears mainly controlled by progradation rates, with higher ridges associated with lower progradation rates. Progradation rate, in turn, is mostly related to longshore wave power, storminess, and the occurrence storm groups. Yet, the final configuration of ridges can also be affected by runup levels and onshore winds. Therefore, establishing the relation between ridge geometry and wave climate is not a straightforward task, because of the complex processes and interactions that control coastal morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
140.
Sandy-muddy transitional beaches (SMT-Beaches), representing the transition from sandy beaches to tidal mudflats, should theoretically develop very different morphological and sedimentological characteristics in river estuaries and in semi-enclosed bays due to their contrasting dynamic sedimentary environments. Evidence, however, is rare in the scientific literature. To reveal these morphological and sedimentary differences, the sand–mud transition (SMT) boundary distribution, beach profiles, and surface and downcore sediment grain-size compositions of 27 SMT-Beaches located along mesotidal to macrotidal coasts of the western Taiwan Strait, southeastern China, were investigated. The results show that typical estuarine SMT-Beaches are mainly characterized by an ambiguous SMT, a long distance between the SMT and the coastline (31–302 m), lower SMT and inflection point altitudes (average –0.76 m and –0.04 m), and lower upper beach gradients (~0.068) with fine sand. Estuarine SMT-Beach sediments display clear interbedded mud and sand layers, implying potential SMT migrations over various timescales. By contrast, typical bay SMT-Beaches are characterized by distinct SMT, a short distance between the SMT and the coastline (11–52 m), higher SMT and inflection point altitudes (~0.24 m and ~0.35 m), and narrower upper beaches with higher gradients (~0.095) and coarse sand. Bay SMT-Beaches present relatively stable sedimentary sequences and a narrow gravel belt surrounding the inflection point and/or SMT. These morphological and sedimentary differences between the two SMT-Beach types are initially constrained by sediment supply and transport and are further affected by tide conditions and wave climate. Sediment supply and transport predominately control the sediment structures, while the tidal range strongly influences spatial variations in SMT distances. Wave climate normally drives SMT altitude variations. This study highlights the morphological and sedimentary differences in SMT-Beaches in estuaries and bays, providing important knowledge for further revealing their morphodynamic processes and potential future nourishment. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号