首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   45篇
  国内免费   196篇
工业技术   745篇
  2024年   6篇
  2023年   39篇
  2022年   37篇
  2021年   35篇
  2020年   23篇
  2019年   30篇
  2018年   5篇
  2017年   8篇
  2016年   28篇
  2015年   42篇
  2014年   50篇
  2013年   27篇
  2012年   44篇
  2011年   42篇
  2010年   28篇
  2009年   21篇
  2008年   22篇
  2007年   31篇
  2006年   33篇
  2005年   22篇
  2004年   20篇
  2003年   14篇
  2002年   8篇
  2001年   13篇
  2000年   16篇
  1999年   18篇
  1998年   13篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   13篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有745条查询结果,搜索用时 0 毫秒
61.
为分析变电站带电作业相间作业间隙放电特性,针对变电站带电作业实际工况,进行了变电站管母相间组合间隙(PPCG)放电试验研究,得到了相间组合间隙的操作冲击放电特性曲线。并在Rizk经验公式基础上,引入气体放电流体动力学模型,考虑流注-先导放电系统空间电荷对悬浮体电势影响,建立了带悬浮体相间组合间隙放电的物理计算模型,计算了相间组合间隙的50%放电电压,分析了相间组合间隙的放电特性。研究表明,相间组合间隙的50%放电电压的理论计算结果与试验数据的误差£4%;变电站带电作业相间组合间隙中悬浮体距正极性管母约1.55 m(即距离负极性管母0.2 m)处为最低放电位置。因此,所提出的物理模型可用于研究变电站带电作业相间组合间隙放电特性。  相似文献   
62.
为研究添加炭黑(CB)对交联聚乙烯(XLPE)绝缘材料直流介电性能的影响,通过熔融共混制备了CB/XLPE纳米复合材料,在不同的恒定温度下分别测试了各试样的电导率与外施直流电场强度的关系,并利用电声脉冲法测量了各试样内的空间电荷分布状况。研究结果表明,添加少量炭黑即可使XLPE中的空间电荷量明显减少,当炭黑掺量为1 phr(指每100 g XLPE中添加1 g CB)时,复合材料抑制空间电荷的能力较强;XLPE在较低电场强度下就表现出电导非线性特性,且电导率受温度影响较大,最大变化量超过3个数量级;而CB/XLPE纳米复合材料在小于20 kV/mm的电场强度下电导率变化较小,且温度对其直流电导率的影响明显小于XLPE。炭黑能抑制XLPE中空间电荷累积和改善其直流电导特性的原因是增大了材料中的陷阱密度和陷阱深度。  相似文献   
63.
利用空间电荷限制电流的方法测定有机材料的空穴迁移率。用SCLC方法测试得到NPB,m-MTDATA,CBP,Balq四种有机材料的空穴零场迁移率,拟合绘制出四种材料在不同电场下空穴的场依赖迁移率。测试不同浓度红色磷光染料Ir(piq)2acac)掺杂到这四种母体后空穴迁移率的变化情况,分析发现,掺杂母体与客体的能级匹配是研究载流子在掺杂层输运模式的关键,其直接决定了有机材料空穴迁移率的大小。  相似文献   
64.
金属化薄膜是重要的电容器卷绕材料,研究空间电荷效应对其绝缘性能提升至关重要。该文搭建皮秒脉冲激光诱导压力波(laser induced pressure pulse,LIPP)法空间电荷测量系统,以12和6μm厚金属化双向拉伸聚丙烯(biaxially oriented polypropylene,BOPP)薄膜为例,获得其在直流电场下的空间电荷分布。结果可知:同极性电荷量随施加电场增加,在强电场下存在非线性空间电荷效应;金属镀层一侧接负极条件非线性效应更强,但仍弱于薄膜与电极物理接触侧(非金属化一侧),后者向介质内部注入电荷明显,说明金属蒸镀较物理接触可以减弱界面电荷效应;随薄膜厚度减小,获得空间电荷峰宽度减少而峰前沿增加。所得结果证实了皮秒脉冲LIPP法测量10μm及以下金属化薄膜空间电荷分布的可行性,并为研究其空间电荷效应、绝缘性能优化提供一定参考。  相似文献   
65.
极性反转电压下换流变压器内部电场分布复杂,而空间电荷是引起电场畸变的重要因素。为研究极性反转电压下油纸绝缘空间电荷与电场分布特性,为此利用电声脉冲法开展了不同温度下单层油浸纸板与油-纸双层绝缘空间电荷试验研究。研究发现:不同温度下单层油浸纸板空间电荷在极性反转过程中变化很少,极性反转后电极附近电荷密度与电场畸变严重;温度通过改变反转前空间电荷分布影响极性反转过程中电场分布。双层绝缘中,温度升高导致油-纸界面电荷和纸中空间电荷密度降低;电压极性反转过程中,不同温度下纸内部空间电荷变化较少,常温时双层暂态电场符合容性电场分布;而60℃时油-纸界面电荷密度与极性快速变化,导致双层暂态电场分布不符合容性电场分布。  相似文献   
66.
探索绝缘油老化或绝缘纸老化对油纸绝缘介质在老化过程中空间电荷形成及迁移特性的影响,能为有效抑制油纸介质空间电荷的形成提供科学依据。首先在130℃下将绝缘油进行22 d加速热老化,并对其老化状态进行表征;然后通过电声脉冲法测量由不同老化程度绝缘油浸渍的油纸试品,分析在加压、瞬时去压和去压情况下绝缘油老化对油纸试品直流空间电荷动态行为的影响;最后通过计算分析绝缘油老化对油纸试品的空间电荷总量、表面陷阱能级分布和电场畸变率的影响。结果表明:在负极性电源电压下,贴近阳极(铝板)侧绝缘纸层内注入的正电荷密度以及在靠近阳极侧绝缘纸–绝缘纸界面处积聚的负电荷密度均随绝缘油老化程度加深而增大;绝缘油老化越严重,相应绝缘油浸渍油纸试品的空间电荷总量、表面陷阱能级密度和电场畸变率也越大。  相似文献   
67.
绕击是造成超特高压输电线路雷击跳闸的主要原因,而在绕击事故中,空间电荷的作用不容忽视。为研究空间电荷对雷电绕击输电线路的影响,笔者对150 cm棒—线间隙施加正负操作冲击电压,采用高速摄像系统对放电发展过程进行观测并对外径不同的线电极上的击中次数进行了统计分析,测量了棒对不同外径线电极的预放电电流,采用积分电流法得到线电极周围的空间电荷量,通过ANSYS仿真得到空间电荷对电场的影响。实验结果发现:正操作冲击电压下空间电荷的屏蔽作用对放电击中点的影响较大,而负操作冲击电压下,空间电荷的屏蔽作用不是影响击中次数和放电路径的主导因素;空间电荷的屏蔽作用与线电极的尺寸有关,线电极的外径越大,其表面空间电荷的屏蔽作用越小。  相似文献   
68.
陈驰  王霞  吴锴  成传晖  王闯 《高电压技术》2021,47(11):4078-4086
直流电场下,电缆绝缘中的温度梯度效应导致绝缘材料空间电荷行为复杂,影响电缆系统长期运行的可靠性.目前,温度梯度下电缆绝缘空间电荷特性的研究多集中于平板结构的切片试样,但平板结构切片试样的空间电荷测量能否反映真实电缆绝缘中的空间电荷特性尚缺乏有力证明.该研究测量并分析了温度梯度场下2种不同结构(同轴结构、平板结构)10 ...  相似文献   
69.
环氧复合材料在高温高场等复杂的工况下易积聚空间电荷,造成局部场强畸变,严重时将引发局部放电乃至绝缘击穿。通过纳米MgO颗粒与环氧树脂(EP)混合制备不同掺杂率的纳米MgO/EP复合电介质,采用差示扫描量热分析(DSC)测试环氧复合电介质的玻璃化转变温度;采用热刺激去极化电流法(TSDC)拟合计算环氧复合电介质的陷阱特性;采用电声脉冲法(PEA)测试环氧复合电介质的空间电荷特性。结果表明:纳米MgO颗粒的添加可以提高环氧树脂的玻璃化转变温度,抑制环氧树脂内空间电荷积聚。随着纳米MgO掺杂率的增加,纳米MgO/EP复合电介质的玻璃化转变温度先上升后下降,深陷阱能级和密度均先增大后减小;空间电荷密度先下降后上升,电场畸变的变化趋势与空间电荷的变化趋势相似。当纳米MgO掺杂率为3%时,纳米MgO/EP复合电介质的玻璃化温度达到最大值,抑制空间电荷积聚和场强畸变的能力最好。  相似文献   
70.
高压交联聚乙烯(XLPE)直流电缆在工作状态下,会受到电力系统中由投切等操作引起的操作冲击电压的破坏,导致绝缘受到影响,而目前缺乏多次冲击累积效应引起空间电荷累积导致电缆绝缘劣化的相关研究。本文基于实验室已有的直流叠加冲击电压下的PEA法空间电荷测量系统,分别测量了直流电压、冲击电压、直流叠加冲击电压作用下XLPE电缆绝缘中的空间电荷特性。结果表明:正直流电压下XLPE体内以异极性电荷为主,负直流电压下SC电极上出现同极性负电荷的注入;连续的高幅值冲击电压作用会导致双电极上大量的同极性电荷注入,且负极性冲击下电荷注入量略多;当直流叠加冲击电压时,同极性叠加方式比异极性叠加方式更能促进双电极上同极性电荷的注入,而且冲击电压作用时间越长,XLPE试样内部积聚的电荷量越多。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号