首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   49篇
  国内免费   1篇
生物科学   980篇
  2022年   5篇
  2021年   15篇
  2020年   10篇
  2019年   7篇
  2018年   12篇
  2017年   12篇
  2016年   23篇
  2015年   48篇
  2014年   39篇
  2013年   65篇
  2012年   77篇
  2011年   63篇
  2010年   46篇
  2009年   33篇
  2008年   61篇
  2007年   69篇
  2006年   60篇
  2005年   70篇
  2004年   50篇
  2003年   52篇
  2002年   51篇
  2001年   6篇
  2000年   10篇
  1999年   8篇
  1998年   10篇
  1997年   11篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1937年   1篇
排序方式: 共有980条查询结果,搜索用时 15 毫秒
931.
The baculovirus Autographa californica nucleopolyhedrovirus (AcNPV) has been widely used to achieve a high level of foreign gene expression in insect cells, as well as for efficient gene transduction into mammalian cells without any replication. In addition to permitting efficient gene delivery, baculovirus has been shown to induce host innate immune responses in various mammalian cells and in mice. In this study, we examined the effects of the innate immune responses on gene expression by recombinant baculoviruses in cultured cells. The reporter gene expression in IRF3-deficient mouse embryonic fibroblasts (MEFs) infected with the recombinant baculovirus was shown to be enhanced in accordance with the suppression of beta interferon (IFN-β) production. Furthermore, efficient gene transduction by the recombinant baculovirus was achieved in MEFs deficient for stimulator of interferon genes (STING), TANK binding kinase 1 (TBK1), IFN regulatory factor 3 (IRF3), or IFN-β promoter stimulator 1 (IPS-1), but not in those deficient for IRF7, MyD88, or Z-DNA binding protein 1 (ZBP1)/DAI. Enhancement of gene expression by the recombinant baculovirus was also observed in human hepatoma cell lines replicating hepatitis C virus (HCV), in which innate immunity was impaired by the cleavage of IPS-1 by the viral protease. In addition, infection with the recombinant baculovirus expressing the BH3-only protein, BIMS, a potent inducer of apoptosis, resulted in a selective cell death in the HCV replicon cells. These results indicate that innate immune responses induced by infection with baculovirus attenuate transgene expression, and this characteristic might be useful for a selective gene transduction into cells with impaired innate immunity arising from infection with various viruses.  相似文献   
932.
Methylglyoxal (MG) is an endogenous metabolite in glycolysis and forms stable adducts primarily with arginine residues of intracellular proteins. The biological role of this modification in cell function is not known. In the present study, we found that a MG-detoxification enzyme glyoxalase I (GLO1) is mainly expressed in the ventricular zone (VZ) at embryonic day 16 which neural stem and progenitor cells localize. Moreover, immunohistochemical analysis revealed that argpyrimidine, a major MG-arginine adduct, is predominantly produced in cortical plate neurons not VZ during cerebral cortex development and is exclusively located in the nucleus. Immunoblotting experiment showed that the formation of argpyrimidine occurs on some nuclear proteins of cortical neurons. To our knowledge, this is first report of the argpyrimidine formation in the nucleus of neuron. These findings suggest that GLO1, which is dominantly expressed in the embryonic VZ, reduces the intracellular level of MG and suppresses the formation of argpyrimidine in neural stem and progenitor cells. Argpyrimidine may contribute to the neural differentiation and/or the maintenance of the differentiated state via the modification of nuclear proteins.  相似文献   
933.
Bax inhibitor-1 (BI-1) is a cell death suppressor protein conserved across a variety of organisms. The Arabidopsis atbi1-1 plant is a mutant in which the C-terminal 6 amino acids of the expressed BI-1 protein have been replaced by T-DNA insertion. This mutant BI-1 protein (AtBI-CM) produced in Escherichia coli can no longer bind to calmodulin. A promoter-reporter assay demonstrated compartmentalized expression of BI-1 during hypersensitive response, introduced by the inoculation of Pseudomonas syringae possessing the avrRTP2 gene, Pst(avrRPT2). In addition, both BI-1 knockdown plants and atbi1-1 showed increased sensitivity to Pst(avrRPT2)-induced cell death. The results indicated that the loss of calmodulin binding reduces the cell death suppressor activity of BI-1 in planta.Bax inhibitor-1 (At5g47120, BI-1)2 is a highly conserved cell death suppressor protein that resides in the endoplasmic reticulum (ER) membranes of a range of organisms. BI-1 is important in the response of organisms to abiotic and biotic stresses. Down-regulation of BI-1 in tobacco suspension cells (BY2) induced sensitivity against starvation (1), whereas overexpression in barley induced the breakdown of mlo-mediated penetration resistance to the fungal pathogen, powdery mildew (Blumeria graminis) (2). Cultured rice cells overexpressing Arabidopsis BI-1 (AtBI-1) showed increased resistance to Magnaporthe grisea-induced hypersensitive response (HR)-like cell death, potentially confirming the role of BI-1 in HR regulation (3). Recent studies on animal and plant BI-1 indicated a close relationship with ER stress response (46). BI-1-deficient mice are hypersensitive to apoptosis induced by ER stress agents such as thapsigargin, tunicamycin, and brefeldin A (4). Such events correlate with decreased calcium release from the ER, and our previous study demonstrated an association of BI-1 with calcium signaling in stress-treated plant cells (7). However, the molecular mechanism by which BI-1 suppresses cell death is still unclear.Recently, Watanabe et al. (5, 8) demonstrated that an Arabidopsis T-DNA-tagged mutant, atbi1-1, was more susceptible to fungal toxin-, heat-shock-, and tunicamycin-induced cell death. The atbi1-1 plant has T-DNA inserted into the AtBI-1 protein C-terminal region, which contains potential coiled-coil structures and is essential for inhibiting both Bax-induced lethality in yeast and oxidative stress-induced cell death in plant cells as we had demonstrated earlier (9). We also found that the C-terminal 14 amino acids of AtBI-1 were capable of binding to the calmodulin molecule, a mediator of calcium signaling (7). Here, the present study directly proved the functional interaction between the highly conserved calmodulin molecule and BI-1 using a genomic mutation of the AtBI-1 gene. Such a genomic mutant showed accelerated sensitivity against Pseudomonas-induced HR cell death. The results indicated that the C-terminal-less BI-1 protein, which lost the CaM binding, was associated with reduced cell death suppression activity in vivo.  相似文献   
934.
Both interleukin-4 (IL-4) and IL-13 can bind to the shared receptor composed of the IL-4 receptor α chain and the IL-13 receptor α1 chain (IL-13Rα1); however, the mechanisms by which these ligands bind to the receptor chains are different, enabling the principal functions of these ligands to be different. We have previously shown that the N-terminal Ig-like domain in IL-13Rα1, called the D1 domain, is the specific and critical binding unit for IL-13. However, it has still remained obscure which amino acid has specific binding capacity to IL-13 and why the D1 domain acts as the binding site for IL-13, but not IL-4. To address these questions, in this study we performed mutational analyses for the D1 domain, combining the structural data to identify the amino acids critical for binding to IL-13. Mutations of Lys-76, Lys-77, or Ile-78 in c′ strand in which the crystal structure showed interaction with IL-13, and those of Trp-65 and Ala-79 adjacent to the interacting site, resulted in significant impairment of IL-13 binding, demonstrating that these amino acids generate the binding site. Furthermore, mutations of Val-35, Leu-38, or Val-42 at the N-terminal β-strand also resulted in loss of IL-13 binding, probably from decreased structural stability. None of the mutations employed here affected IL-4 binding. These results demonstrate that the D1 domain of IL-13Rα1 acts as an affinity converter, through direct cytokine interactions, that allows the shared receptor to respond differentially to IL-4 and IL-13.Interleukin-4 (IL-4)2 and IL-13 are related cytokines. IL-4 binds to a heterodimeric complex composed of the IL-4R α chain (IL-4Rα) and the common γ chain (γc), or of IL-4Rα and the IL-13R α1 chain (IL-13Rα1), called type I or type II IL-4R, respectively (1, 2). In contrast, IL-13 binds to type II IL-4R, but not type I IL-4R. Therefore, type II IL-4R is also called IL-13R. This means that IL-4 and IL-13 share the same receptor, type II IL-4R·IL-13R, which explains why IL-4 and IL-13 exert similar activities. However, the principal functions of IL-4 and IL-13 are different. As type I IL-4R is mainly expressed on hematopoietic cells, IL-4 acts on these cells, inducing Th2 differentiation in T cells and immunoglobulin class switching to IgE in B cells (1, 3). In contrast, type II IL-4R·IL-13R expresses ubiquitously, including nonhematopoietic cells, and IL-13 plays a central role in the pathogenesis of bronchial asthma by acting on these cells, including epithelial cells and fibroblasts (1, 4). Thus, it can be said that the principal role of IL-4 is an immunoregulatory cytokine, whereas that of IL-13 is an effector cytokine (5).The assembly mechanism for the binding of either IL-4 or IL-13 to type II IL-4R·IL-13R is unique. IL-4 first binds to IL-4Rα with high affinity (Kd = 1 nm), followed by recruitment of IL-13Rα1 with low affinity. In contrast, IL-13 first binds to IL-13Rα1 with low affinity (Kd = 30–37 nm), and then the complex recruits IL-4Rα, forming a high affinity receptor (Kd = 0.03–0.4 nm (6, 7)). This means that, although both IL-4 and IL-13 use IL-4Rα and IL-13Rα1, the roles of IL-4Rα and IL-13Rα1 as the primary or secondary binding unit are the opposite of those for IL-4 and IL-13. Furthermore, these differences in affinity between the ligand, the primary binding unit, and the secondary binding unit can result in that in nonhematopoietic cells on which IL-131 is expressed more abundantly than IL-4α, the number of the IL-13 receptor complex continues to rise as the IL-13 concentration increases, whereas the formation of the IL-4 receptor complex is saturated at a low IL-4 concentration. This can explain why IL-13 transduces stronger signals than IL-4 in nonhematopoietic cell such as epithelial cells and fibroblasts.We previously found that the N-terminal Ig-like domain in IL-13Rα1, called the D1 domain, is the specific and critical binding unit for IL-13, but not for IL-4, using the D1 domain-deleted IL-13Rα1 (8). LaPorte et al. recently described the crystal structure of the IL-13·IL-13Rα1·IL-4Rα, showing that the c′ strand of the D1 domain of IL-13Rα1 and the C-D strand of IL-13 generate an antiparallel β-sheet structure (7). Furthermore, this structural analysis showed that the polar bonds between IL-4 and IL-4Rα were diminished in the IL-13·IL-4Rα complex, possibly suggesting why IL-4Rα has high and no affinity with IL-4 and IL-13, respectively. These results confirmed that the unique assembly mechanism of type II IL-4R·IL-13R for IL-4 and IL-13 is dictated by the D1 domain and indicated that the c′ strand in the D1 domain is the binding site of IL-13Rα1 to IL-13. It is thought that IL-13Rα1 has evolved from γc, which does not have the extra Ig domain, acquiring the D1 domain probably from IL-2Rα or IL-15Rα (7, 9). In other words, the acquisition of the D1 domain enables the cells to respond to IL-13 in addition to IL-4. In this sense, the D1 domain appears to be an affinity converter that has evolved differential interactions with IL-4 and IL-13 to respond to the two cytokines distinctly, based on receptor expression levels and cytokine concentration. Thus, the evolution of distinct interactions of D1 with IL-4 versus IL-13 is an unprecedented example of divergent evolution of function of the same structure. Interestingly, in the structural study, it was observed that the c′ strand of the D1 domain of IL-13Rα1 can also generate an antiparallel β-sheet structure with IL-4 that appears similar to that of IL-13 (7), leaving open the question of whether it is energetically important for IL-13 but not IL-4, and whether direct interactions are required.From these studies, several questions remain unresolved. The structures did not make it clear if this differential effect is indirect, or through direct interaction with the cytokines. Are the c′ contacts with cytokines energetically important and distinct for IL-4 and IL-13? If this is the case, then the second question is which amino acid in the c′ strand has specific binding capacity to IL-13. The third question is why does this portion act as the binding site specific for IL-13, but not IL-4. To address these questions, we took advantage of the mutational approach for the D1 domain, combining data from the structural study, and identified the amino acids critical for binding to IL-13.  相似文献   
935.
Chaperonin is a double ring-shaped oligomeric protein complex, which captures a protein in the folding intermediate state and assists its folding in an ATP-dependent manner. The chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, is a group II chaperonin and is composed of two distinct subunits, α and β. Although these subunits are highly homologous in sequence, the homo-oligomer of the β-subunit is more thermostable than that of the α-subunit. To identify the region responsible for this difference in thermostability, we constructed domain-exchange mutants. The mutants containing the equatorial domain of the β-subunit were more resistant to thermal dissociation than the mutants with that of the α-subunit. Thermostability of a β-subunit mutant whose C-terminal 22 residues were replaced with those of the α-subunit decreased to the comparable level of that of the α-subunit homo-oligomer. These results indicate that the difference in thermostability between α- and β-subunits mainly originates in the C-terminal residues in the equatorial domain, only where they exhibit substantial sequence difference.Takao Yoshida, Taro Kanzaki, Ryo Iizuka and Toshihiro Komada contributed equally to this paper.  相似文献   
936.

Background  

Transposable elements are abundant in the genomes of many filamentous fungi, and have been implicated as major contributors to genome rearrangements and as sources of genetic variation. Analyses of fungal genomes have also revealed that transposable elements are largely confined to distinct clusters within the genome. Their impact on fungal genome evolution is not well understood. Using the recently available genome sequence of the plant pathogenic fungus Magnaporthe oryzae, combined with additional bacterial artificial chromosome clone sequences, we performed a detailed analysis of the distribution of transposable elements, syntenic blocks, and other features of chromosome 7.  相似文献   
937.
938.
In order to explore new scaffolds for large-conductance Ca2+ -activated K+ channel (BK channel) openers, we carried out molecular design and synthesis on the basis of the following two concepts: (1) introduction of a heteroatom into the dehydroabietic acid (BK channel opener) skeleton would allow easier introduction of substituents. (2) Because of the fourfold symmetrical structure of BK channels, dimeric compounds in which two pharmacophores are linked through a tether are expected to have a greater binding probability to the channels, resulting in increased channel-opening activity. Herein, we explore the usefulness of the hexahydrodibenzazepinone structure as a new scaffold for BK channel openers. The synthesized monomer compounds of hexahydrodibenzazepinone derivatives, which can be derived from dehydroabietic acid, were subjected to electrophysiological patch-clamp studies, followed by Magnus contraction-relaxation assay using rabbit urinary bladder smooth muscle strips to assess overall activities. Dimeric compounds were designed by linking the monomeric hexahydrodibenzazepinone derivatives through a diacetylenebenzene tether, and their channel-opening activities were evaluated by electrophysiological methods. Finally, we concluded that the critical structure for BK channel-opening activity is the hexahydrodibenzazepinone monomer substituted with a phenyl-bearing alkynyl substituent on the lactam amide.  相似文献   
939.
The radical and superoxide scavenging activities of oxidized matairesinols were examined. It could be assumed that the free benzylic position was important for higher radical scavenging activity. The different level of activity was observed between 7'-oxomatairesinol (Mat 2) and 7-oxomatairesinol (Mat 3). The activity of 8-hydroxymatairesinol was lower than that of matairesinol (Mat 1). The superoxide scavenging activity of the oxidized matairesinols was also demonstrated for the first time. It is assumed that the pKa value of phenol in the oxidized matairesinols affected this activity.  相似文献   
940.
L-Leucine is known to stimulate protein synthesis in L6 myotubes. In the present study, we examined the possible involvement of calcium signaling pathways in the stimulation of protein synthesis induced by L-leucine in L6 myotubes. After 16 h of treatment with L-leucine-depleted medium, the re-addition of L-leucine for 4 h augmented protein synthesis by about 50% as compared with an L-leucine-depleted control. Ryanodine receptor antagonists almost completely abolished the stimulatory effect of L-leucine, while IP(3) receptor antagonists showed partial inhibition when added simultaneously with L-leucine. These results suggest the possibility that calcium signaling pathways are involved in L-leucine-stimulated protein synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号