首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1227篇
  免费   60篇
生物科学   1287篇
  2022年   3篇
  2021年   8篇
  2020年   6篇
  2019年   5篇
  2018年   9篇
  2017年   14篇
  2016年   10篇
  2015年   32篇
  2014年   33篇
  2013年   59篇
  2012年   58篇
  2011年   88篇
  2010年   54篇
  2009年   53篇
  2008年   98篇
  2007年   95篇
  2006年   95篇
  2005年   119篇
  2004年   111篇
  2003年   90篇
  2002年   65篇
  2001年   10篇
  2000年   6篇
  1999年   9篇
  1998年   10篇
  1997年   13篇
  1996年   11篇
  1995年   7篇
  1994年   10篇
  1993年   9篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   2篇
  1986年   6篇
  1985年   6篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1287条查询结果,搜索用时 140 毫秒
91.
The murine recessive yellow (Mc1r(e)) is a loss-of-function mutation in the receptor for alpha-melanocyte-stimulating hormone, melanocortin receptor 1 (Mc1r) and produces yellow coats by inducing pheomelanin synthesis in hair follicular melanocytes. However, it is not known whether the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes. In this study, the proliferation and differentiation of recessive yellow epidermal melanocytes cultured in dibutyryl cyclic AMP-supplemented serum-free medium were investigated in detail. The melanocytes produced mainly eumelanin in this culture system. The proliferation of recessive yellow melanocytes was decreased compared with that of wild-type at the e-locus, black melanocytes. The differentiation of melanocytes was also delayed and inhibited in recessive yellow mice. Tyrosinase (TYR) activity and TYR-related protein 1 (TRP1) and TRP2 (dopachrome tautomerase, DCT) expressions were decreased and, in addition, the maturation of stage IV melanosomes was inhibited. Excess l-tyrosine (l-Tyr) added to the culture media rescued the reduced activity of proliferation of melanocytes. l-Tyr also stimulated TYR activity and TRP1 and TRP2 expressions as well as the maturation of stage IV melanosomes and pigmentation. These results suggest that the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes and l-Tyr rescues the reduced proliferative and differentiative activities by stimulating TYR activity and TRP1 and TRP2 expressions as well as melanosome maturation.  相似文献   
92.
93.
NADP(H) phosphatase has not been identified in eubacteria and eukaryotes. In archaea, MJ0917 of hyperthermophilic Methanococcus jannaschii is a fusion protein comprising NAD kinase and an inositol monophosphatase homologue that exhibits high NADP(H) phosphatase activity (S. Kawai, C. Fukuda, T. Mukai, and K. Murata, J. Biol. Chem. 280:39200-39207, 2005). In this study, we showed that the other archaeal inositol monophosphatases, MJ0109 of M. jannaschii and AF2372 of hyperthermophilic Archaeoglobus fulgidus, exhibit NADP(H) phosphatase activity in addition to the already-known inositol monophosphatase and fructose-1,6-bisphosphatase activities. Kinetic values for NADP+ and NADPH of MJ0109 and AF2372 were comparable to those for inositol monophosphate and fructose-1,6-bisphosphate. This implies that the physiological role of the two enzymes is that of an NADP(H) phosphatase. Further, the two enzymes showed inositol polyphosphate 1-phosphatase activity but not 3′-phosphoadenosine 5′-phosphate phosphatase activity. The inositol polyphosphate 1-phosphatase activity of archaeal inositol monophosphatase was considered to be compatible with the similar tertiary structures of inositol monophosphatase, fructose-1,6-bisphosphatase, inositol polyphosphate 1-phosphatase, and 3′-phosphoadenosine 5′-phosphate phosphatase. Based on this fact, we found that 3′-phosphoadenosine 5′-phosphate phosphatase (CysQ) of Escherichia coli exhibited NADP(H) phosphatase and fructose-1,6-bisphosphatase activities, although inositol monophosphatase (SuhB) and fructose-1,6-bisphosphatase (Fbp) of E. coli did not exhibit any NADP(H) phosphatase activity. However, the kinetic values of CysQ and the known phenotype of the cysQ mutant indicated that CysQ functions physiologically as 3′-phosphoadenosine 5′-phosphate phosphatase rather than as NADP(H) phosphatase.  相似文献   
94.
Fukunaga R  Yokoyama S 《Biochemistry》2007,46(17):4985-4996
In the archaeal leucyl-tRNA synthetase (LeuRS), the C-terminal domain recognizes the long variable arm of tRNA(Leu) for aminoacylation, and the so-called editing domain deacylates incorrectly formed Ile-tRNA(Leu). We previously reported, for Pyrococcus horikoshii LeuRS, that a deletion mutant lacking the C-terminal domain (LeuRS_delta(811-967)) retains normal editing activity, but has severely reduced aminoacylation activity. In this study, we found that LeuRS_delta(811-967), but not the wild-type LeuRS, exhibited surprisingly robust deacylation activity against Ile-tRNA(Ile), correctly formed by isoleucyl-tRNA synthetase ("misediting"). Structural superposition of tRNA(Ile) onto the LeuRS x tRNA(Leu) complex indicated that Ile911, Lys912, and Glu913 of the LeuRS C-terminal domain clash with U20 of tRNA(Ile), which is bulged out as compared to the corresponding nucleotide of tRNA(Leu). The deletion of amino acid residues 911-913 of LeuRS enhanced the Ile-tRNA(Ile) deacylation activity, without affecting the Ile-tRNA(Leu) deacylation activity. These results demonstrate that the clashing between U20 of tRNA(Ile) and residues 911-913 of the LeuRS C-terminal domain is the structural mechanism that prevents misediting. In contrast, the deletion of the C-terminal domains of the isoleucyl- and valyl-tRNA synthetases impaired both the aminoacylation (Ile-tRNA(Ile) and Val-tRNA(Val) formation, respectively) and editing (Val-tRNA(Ile) and Thr-tRNA(Val) deacylation, respectively) activities, and did not cause misediting (Val-tRNA(Val) and Thr-tRNA(Thr) deacylation, respectively) activity. Thus, the requirement of the C-terminal domain for misediting prevention is unique to LeuRS, which does not recognize the anticodon of the cognate tRNA, unlike the common aminoacyl-tRNA synthetases.  相似文献   
95.
96.
97.
A series of 5beta-methylprolyl-2-cyanopyrrolidine analogs were synthesized and evaluated as DPP-IV inhibitors, and the duration of their ex vivo activity was assessed. Comparison of their potency and duration of action was done among three different species. The mode of binding was investigated, and the effect on the plasma glucose level was evaluated. Structure-activity relationships are also presented.  相似文献   
98.
In the bacterial genetic-code system, the codon AUA is decoded as isoleucine by tRNA(Ile)(2) with the lysidine residue at the wobble position. Lysidine is derived from cytidine, with ATP and L-lysine, by tRNA(Ile) lysidine synthetase (TilS), which is an N-type ATP pyrophosphatase. In this study, we determined the crystal structure of Aquifex aeolicus TilS, complexed with ATP, Mg2+, and L-lysine, at 2.5 A resolution. The presence of the TilS-specific subdomain causes the active site to have two separate gateways, a large hole and a narrow tunnel on the opposite side. ATP is bound inside the hole, and L-lysine is bound at the entrance of the tunnel. The conserved Asp36 in the PP-motif coordinates Mg2+. In these initial binding modes, the ATP, Mg2+, and L-lysine are held far apart from each other, but they seem to be brought together for the reaction upon cytidine binding, with putative structural changes of the complex.  相似文献   
99.
100.
The introduction of an unnatural base pair into DNA enables the expansion of genetic information. To apply unnatural base pairs to in vivo systems, we evaluated the cytostatic toxicity of several nucleoside analogs by an MTT assay. Several nucleoside analogs based on two types of unnatural base pairs were tested. One is a hydrogen-bonded base pair between 2-amino-6-(2-thienyl)purine (s) and pyridin-2-one (y), and the other is a hydrophobic base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and pyrrole-2-carbaldehyde (Pa). Among the nucleoside analogs, the ribonucleoside of 6-(2-thienyl)purine possessed the highest cytostatic activity against CCRF-CEM and especially HT-1080, as well as the normal fibroblast cell line, WI-38. The other analogs, including its 2'-deoxy, 2-amino, and 1-deazapurine nucleoside derivatives, were less active against CCRF-CEM and HT-1080, and the toxicity of these nucleosides toward WI-38 was low. The nucleosides of y and Pa were inactive against CCRF-CEM, HT-1080, and WI-38. In addition, no cytostatic synergism was observed with the combination of the pairing nucleosides of s and y or Ds and Pa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号