首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   106篇
  国内免费   5篇
生物科学   1296篇
  2024年   2篇
  2023年   20篇
  2022年   44篇
  2021年   56篇
  2020年   59篇
  2019年   153篇
  2018年   95篇
  2017年   63篇
  2016年   64篇
  2015年   62篇
  2014年   70篇
  2013年   107篇
  2012年   94篇
  2011年   89篇
  2010年   53篇
  2009年   43篇
  2008年   41篇
  2007年   26篇
  2006年   35篇
  2005年   27篇
  2004年   20篇
  2003年   16篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   9篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1970年   2篇
  1967年   1篇
排序方式: 共有1296条查询结果,搜索用时 0 毫秒
31.
Biological Trace Element Research - Metabolic failure is associated with dyslipidemia and coagulation which can result in a higher risk of cardiovascular disease (CVD) in type 2 diabetes mellitus...  相似文献   
32.
33.
Molecular Biology Reports - Neuroinflammation and mitochondrial dysfunction are suggested as mechanisms which are implicated in the pathophysiology of depression. Streptozotocin (STZ) is known to...  相似文献   
34.
Rapid growth in nanotechnology toward the development of nanomedicine agents holds massive promise to improve therapeutic approaches against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multifunctionality. Nowadays, nanoparticles (NPs) have multiple applications in different branches of science. In recent years, NPs have repetitively been reported to play a significant role in modern medicine. They have been analyzed for different clinical applications, such as drug carriers, gene delivery to tumors, and contrast agents in imaging. A wide range of nanomaterials based on organic, inorganic, lipid, or glycan compounds, as well as on synthetic polymers has been utilized for the development and improvement of new cancer therapeutics. In this study, we discuss the role of NPs in treating cancer among different drug delivery methods for cancer therapy.  相似文献   
35.
Hydrogen sulphide (H2S) is one of three gaseous signaling molecules after nitric oxide and carbon monoxide. Various H2S donor compounds have been synthesized to study its physiological function. Among these compounds sodium hydrosulphide (NaHS), a donor of releasing H2S rapidly have shown to be protective in certain neuronal cell line but several in vivo studies have generated conflicting data. Furthermore several slow releasing H2S donors have been shown to have positive effects on cells in culture. The intracellular concentration of H2S and hence its rate of production may be a factor in keeping the balance between its neuroprotective and toxic effects. The present study was undertaken to deduce how a rapid releasing H2S donor (NaHS) as opposed to a slow releasing donor (ADTOH), affect oxidative stress related intracellular components and survival of RGC-5 cells. It was concluded that when RGC-5 cells are exposed to the toxic effects of glutamate in combination with buthionine sulfoxime (Glu/BSO), ADTOH was more efficacious in inhibiting apoptosis, scavenging reactive oxygen species (ROS), stimulation of glutathione (GSH) and gluthathione-S-transferase (GST). Western blot and qPCR analysis showed ADTOH increased the levels of Nrf2, HO-1, PKCα, p-Akt, Bcl-2 and XIAP but caused a decrease of Nfκβ and xCT greater than NaHS. This study is first to compare the efficacy of two H2S donor drugs as potential neuroprotectants and demonstrate that slow regulated release of H2S to cell culture can be more beneficial in inhibiting oxidative stress induced cell death.  相似文献   
36.
Lycopene content is a key component of tomato (Solanum lycopersicum L.) fruit quality, and is a focus of many tomato-breeding programs. Two QTLs for increased fruit lycopene content, inherited from a high-lycopene S. pimpinellifolium accession, were previously detected on tomato chromosomes 7 and 12 using a S. lycopersicum × S. pimpinellifolium RIL population, and were identified as potential targets for marker-assisted selection and positional cloning. To validate the phenotypic effect of these two QTLs, a BC2 population was developed from a cross between a select RIL and the S. lycopersicum recurrent parent. The BC2 population was field-grown and evaluated for fruit lycopene content using HPLC. Statistical analyses revealed that while lyc7.1 did not significantly increase lycopene content in the heterozygous condition, individuals harboring lyc12.1 in the heterozygous condition contained 70.3 % higher lycopene than the recurrent parent. To eliminate the potential pleiotropic effect of fruit size and minimize the physical size of the lyc12.1 introgression, a marker-assisted backcross program was undertaken and produced a BC3S1 NIL population (n = 1,500) segregating for lyc12.1. Lycopene contents from lyc12.1 homozygous and heterozygous recombinants in this population were measured and lyc12.1 was localized to a 1.5 cM region. Furthermore, we determined that lyc12.1 was delimited to a ~1.5 Mb sequence of tomato chromosome 12, and provided some insight into potential candidate genes in the region. The derived sub-NILs will be useful for transferring of lyc12.1 to other tomato genetic backgrounds and for further fine-mapping and cloning of the QTL.  相似文献   
37.
Predictive potential distribution modeling is crucial in outlining habitat usage and establishing conservation management priorities. In this paper we provide detailed data on the distribution of the Caucasian rock agama Para- laudakia caucasia, and use species distribution models (MAXENT) to evaluate environmental suitability and potential distribution at a broad spatial scale. Locality data on the distribution of P. caucasia have been gathered over nearly its entire range by various authors from field surveys. The distribution model ofP caucasia showed good performance (AUC = 0.887), and predicted high suitability in regions mainly located in Tajikistan, north Pakistan, Afghanistan, southeast Turkmenistan, northeast Iran along the Elburz mountains, Transcaueasus (Azerbajan, Armenia, Georgia), northeastern Turkey and northward along the Caspian Sea coast in Daghestan, Russia. The identification of suitable areas for this species will help to assess conservation status of the species, and to set up management programs.  相似文献   
38.

Background:

Cutaneous leishmaniasis is an endemic disease in many regions of Iran, including the city of Mashhad. In recent years, some cases have not responded to Glucantime, the usual treatment for this disease. The cellular immune response caused by T-helper type 1 (Th1) cells has an important role in protection against leishmaniasis, and activation of the T-helper type 2 (Th2) response causes progression of the disease. By analyzing these responses we hope to find a more effective treatment than that currently in use for leishmaniasis patients.

Methods:

The cellular immune responses in 60 cases of non-healing and healing cutaneous leishmaniasis, and individuals in a control group, were analyzed by measuring cytokines released by peripheral blood mononuclear cells (PBMCs) when stimulated with Leishmania major antigens by Enzyme Linked Immuno Sorbent Assay (ELISA).

Results:

Subjects from the healing group secreted more interleukin-12 (IL-12) and interferon gamma (IFN-γ) (p<0.05) and less interleukins -4, -5, -10 (IL-4, IL-5, and IL-10) (p<0.005) and -18 (IL-18) (p=0.003) than the non-healing group.

Conclusions:

The results demonstrate that secretion of cytokines that activate Th2 response including IL-4, IL-5 and IL-10 in non-healing subjects was higher than healing subjects and secretion of cytokines that activate Th1 response including IL-12 and IFN-γ in healing subjects was higher relative to the non-healing subjects. In this study it has been shown that the level of IL-18 progresses disease in non-healing patients when the level of IL-12 gets decreased. Key Words: Cytokines, Cutaneous leishmaniasis, Glucantime  相似文献   
39.
40.
Melatonin is reportedly associated with intervertebral disc degeneration (IDD). Endplate cartilage is vitally important to intervertebral discs in physiological and pathological conditions. However, the effects and mechanism of melatonin on endplate chondrocytes (EPCs) are still unclear. Herein, we studied the effects of melatonin on EPC apoptosis and calcification and elucidated the underlying mechanism. Our study revealed that melatonin treatment decreases the incidence of apoptosis and inhibits EPC calcification in a dose‐dependent manner. We also found that melatonin upregulates Sirt1 expression and activity and promotes autophagy in EPCs. Autophagy inhibition by 3‐methyladenine reversed the protective effect of melatonin on apoptosis and calcification, while the Sirt1 inhibitor EX‐527 suppressed melatonin‐induced autophagy and the protective effects of melatonin against apoptosis and calcification, indicating that the beneficial effects of melatonin in EPCs are mediated through the Sirt1‐autophagy pathway. Furthermore, melatonin may ameliorate IDD in vivo in rats. Collectively, this study revealed that melatonin reduces EPC apoptosis and calcification and that the underlying mechanism may be related to Sirt1‐autophagy pathway regulation, which may help us better understand the association between melatonin and IDD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号