首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   946篇
  免费   49篇
生物科学   995篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   9篇
  2018年   9篇
  2017年   12篇
  2016年   16篇
  2015年   27篇
  2014年   22篇
  2013年   74篇
  2012年   38篇
  2011年   56篇
  2010年   33篇
  2009年   29篇
  2008年   43篇
  2007年   46篇
  2006年   42篇
  2005年   48篇
  2004年   38篇
  2003年   49篇
  2002年   28篇
  2001年   30篇
  2000年   22篇
  1999年   23篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   12篇
  1991年   20篇
  1990年   14篇
  1989年   13篇
  1988年   11篇
  1987年   16篇
  1986年   9篇
  1985年   11篇
  1984年   13篇
  1983年   14篇
  1982年   12篇
  1981年   8篇
  1980年   6篇
  1978年   4篇
  1976年   10篇
  1975年   4篇
  1974年   8篇
  1973年   5篇
  1966年   5篇
  1959年   3篇
排序方式: 共有995条查询结果,搜索用时 15 毫秒
41.
Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration.  相似文献   
42.
43.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
44.
We investigated the binding proteins for three Cry toxins, Cry1Aa, Cry1Ac, and the phylogenetically distant Cry9Da, in the midgut cell membrane of the silkworm. In a ligand blot experiment, Cry1Ac and Cry9Da bound to the same 120-kDa aminopeptidase N (APN) as Cry1Aa. A competition experiment with the ligand blot indicated that the three toxins share the same binding site on several proteins. The values of the dissociation constants of the three Cry toxins and 120-kDa APN are as low as the case of other Cry toxins and receptors. These results suggest that distantly related Cry toxins bind to the same site on the same proteins, especially with APN. We propose that the conserved structure in these three toxins includes the receptor-binding site. Received: 12 January 1998 / Accepted: 17 February 1999  相似文献   
45.
Atopic dermatitis (AD) is a pruritic, chronically relapsing skin disease in which Th2 cells play a crucial role in cutaneous and extracutaneous immune reactions. In humans, CD11c+CD123- myeloid dendritic cells (mDC) and CD11c-CD123+ plasmacytoid DC (pDC) orchestrate the decision-making process in innate and acquired immunity. Since the number and function of these blood dendritic cell (DC) subsets reportedly reflect the host immune status, we studied the involvement of the DC subsets in the pathogenesis of AD. Patients with AD had an increased DC number and a low mDC:pDC ratio with pDC outnumbering mDC in the peripheral blood compared with normal subjects and psoriasis patients (a Th1 disease model group). The mDC:pDC ratio was correlated with the total serum IgE level, the ratio of IFN-gamma-producing blood cells:IL-4-producing blood cells, and the disease severity. In vitro allogeneic stimulation of naive CD4+ cells with atopic DC showed that the ability of pDC for Th1 induction was superior or comparable to that of mDC. In skin lesions, pDC infiltration was in close association with blood vessels expressing peripheral neural addressins. Therefore, compartmental imbalance and aberrant immune function of the blood DC subsets may deviate the Th1/Th2 differentiation and thus induce protracted allergic responses in AD.  相似文献   
46.
47.
Stress-relaxation parameters were compared under different experimentalconditions using 5th internode segments of light-grown pea seedlingsand coleoptile segments of dark-grown Avena seedlings. The followingresults were obtained. 1. In a short incubation period at 25?C, IAA caused a decreasein the minimum relaxation time, To, of the epidermal cell wallof pea internodes when it induced elongation; the optimum concentrationof IAA for decreasing To was 10 mg/liter. 2. At all concentrations of IAA used, 0.1–1000 mg/liter,the relationship between the To value of the epidermal cellwall peeled from segments incubated for 2 hr and the subsequentelongation rate in 2–3 hr incubation was linear, indicatingthat the To value of the cell wall at a certain time regulatesthe rate of the following elongation. 3. When segments of pea epicotyls or Avena coleoptiles wereincubated in mannitol solution of various concentrations inthe presence and absence of IAA and then allowed to grow inthe absence of both mannitol and IAA, the segments extendeddifferently depending upon the mannitol concentration, whichwas less than 0.3 M, given during preincubation. 4. The To and b (relaxation rate, S/log t) values were smallerin the cell wall of segments which extended more, than in thosewhich extended less. In this case, 0.2 M mannitol solution wasmost effective, since it inhibited IAA-induced elongation duringpre-incubation and the segments thus incubated extended themost afterward. 5. Extensibility, mm/gr, seemed to parallel the elongation whichhad occurred during pre-incubation, indicating that this value,contrary to To, represented at least partly the result of elongation. From these results we concluded that the growth rate to followis regulated by the minimum stress relaxation time, To, andpossibly by the relaxation rate, b, of the cell wall beforeextension, and these parameters may represent certain biochemicalmodifications of the cell wall components needed for cell extension. (Received August 12, 1974; )  相似文献   
48.
Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.  相似文献   
49.
The bifunctional enzyme chorismate mutase (CM)-prephenate dehydratase (PD), which is encoded by the pheA gene of Escherichia coli, catalyses the two consecutive key steps in phenylalanine biosynthesis. To utilize the enzyme for metabolic engineering of phenylalanine-producing Corynebacterium glutamicum KY10694, the intact gene was cloned on a multicopy vector to yield pEA11. C. glutamicum cells transformed with pEA11 exhibited a more than tenfold increase in CM and PD activities relative to the host cells. Moreover, the level of pheA expression was further elevated a fewfold when cells were starved of phenylalanine, suggesting that the attenuation regulation of pheA expression functions in heterogeneous C. glutanicum. Plasmid pEA11 encoding the wild-type enzyme was mutated to yield pEA22, which specified CM-PD exhibiting almost complete resistance to end-product inhibition. When pEA22 was introduced into KY10694, both the activities of CM and PD were highly maintained throughout the cultivation, thus leading to a 35% increased production (23 g/l) of phenylalanine.  相似文献   
50.
The three protein kinases of Lemna paucicostata that are separableby DEAE-Sephacel chromatography have been designated PI, PIIand PIII [Kato et al. (1983) Plant & Cell Physiol. 24: 841].The optimum pH for the PI and PII enzymes was 7.5 and for thePHI enzyme 7.0. The activities of these enzymes were stimulatedby divalent cations, the maximum stimulation being producedby 5 nw Mg2 $ for PI, by 3 mM Co2 $ for PII and by 1 mM Mn2$ for PIII. The cytokinins; benzyladenine, kinetin and zeatin,inhibited the activity of the PIII enzyme. The molecular weightsof the PI and PII enzymes did not change after incubation withcAMP even though their activities were regulated by this compound. (Received October 17, 1983; )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号