首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3138篇
  免费   384篇
  国内免费   5篇
生物科学   3527篇
  2022年   28篇
  2021年   38篇
  2019年   36篇
  2018年   36篇
  2017年   43篇
  2016年   44篇
  2015年   94篇
  2014年   127篇
  2013年   124篇
  2012年   153篇
  2011年   162篇
  2010年   102篇
  2009年   78篇
  2008年   134篇
  2007年   130篇
  2006年   130篇
  2005年   117篇
  2004年   118篇
  2003年   115篇
  2002年   124篇
  2001年   76篇
  2000年   85篇
  1999年   74篇
  1998年   46篇
  1996年   34篇
  1995年   36篇
  1994年   34篇
  1992年   68篇
  1991年   57篇
  1990年   59篇
  1989年   45篇
  1988年   47篇
  1987年   56篇
  1986年   45篇
  1985年   57篇
  1984年   49篇
  1983年   39篇
  1982年   35篇
  1981年   28篇
  1980年   34篇
  1979年   49篇
  1978年   26篇
  1977年   40篇
  1976年   28篇
  1975年   29篇
  1974年   35篇
  1973年   34篇
  1972年   25篇
  1968年   25篇
  1967年   31篇
排序方式: 共有3527条查询结果,搜索用时 15 毫秒
111.
The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS) domain (residues 26-135) as well as an amphipathic α-helix (residues 13-23) and an initial unstructured segment (residues 2-9). Deletion of residues 2-25, only the unstructured segment (residues 2-9) or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.  相似文献   
112.
113.
114.

Key message

Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean.

Abstract

Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.
  相似文献   
115.
As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems.  相似文献   
116.
The roles of post-translational modifications (PTMs) in the onset and progression of disease have been extensively studied for decades. More specifically, various PTMs have been the focus of research in Alzheimer's disease (AD). The two most discussed hallmarks of the disease, senile plaques and tau tangles, are the result of PTMs of the amyloidβ protein precursor (AβPP) and the microtubule stabilizing protein: tau. While these modifications have been characterized indirectly by biochemical-based methods, the primary shortcoming to this research can be linked to a lack of a thorough molecular-based means of qualitative and quantitative analysis of many of these modifications within transgenic animal, and human samples. In this review, we discuss the important proteins and their associated PTMs linked to AD and the ways in which mass spectrometry has and will be utilized to analyze them. We also comment on novel ways in which molecular-based mass spectrometry methods should be employed going forward to resolve the interconnections of the PTMs involvement in various stages of AD pathology (preclinical, mild cognitive impairment, advanced-stage AD).  相似文献   
117.
Structural analysis of the pilE region of Neisseria gonorrhoeae P9   总被引:6,自引:0,他引:6  
We have determined the nucleotide sequence of an expressed structural pilus gene (pilE) derived from Neisseria gonorrhoeae strain P9-2. Detailed analysis of nucleotide sequences upstream from pilE revealed a silent, truncated pilin gene segment that was linked to families of DNA elements (RS1 and RS3) that have previously been identified at the major silent pilin gene locus (pilS1) and at pilE of the independently isolated N. gonorrhoeae strain MS11ms. A nucleotide sequence downstream from pilE was reminiscent of the recognition sequences of several recombinases, including Tn3 tnpR product (resolvase), suggesting a possible role for site-specific events in the recombinational modulation of pilus expression.  相似文献   
118.
119.
Over evolutionary time, the number of species in a community reflects the balance between the rate of speciation and the rate of extinction. Over shorter time‐scales local species richness is also affected by how often species move into and out of the local community. These processes are at the heart of Hubbell's ‘unified neutral theory of biodiversity’ ( Hubbell 2001 ). Hubbell's spatially implicit, dispersal‐limited neutral model is the most widely used of the many implementations of neutral theory and it provides an estimate of the rate of speciation in a metacommunity (if metacommunity size is known) and the rate at which species migrate into the local community from the wider metacommunity. Recently, this neutral model has been used to compare rates of speciation and migration in the species‐rich fynbos of South Africa and in neotropical forests. Here we use new analytical methods for estimating the neutral model's parameters to infer speciation and dispersal rates for three sites in species‐rich sclerophyll shrublands (equivalent to fynbos) in Western Australia (WA). Our estimates suggest that WA shrublands are intermediate between fynbos and tropical rainforest in terms of speciation and dispersal. Although a weak test, the model predicts species abundance distributions and species accumulation curves similar to those observed at the three sites. The neutral model's predictions also remain plausible when confronted with independent data describing: (1) known edaphic relationships between sites, (2) estimates of metacommunity species richness and (3) rates of speciation among resprouters and nonsprouters. Two of the site pairs, however, show species turnovers significantly different from those predicted by the spatially implicit form of the neutral model that we use. This suggests that non‐neutral processes, in this case probably edaphic specialisation, are important in the WA shrubland metacommunity. The neutral model predicts similar rates of speciation in resprouter and sprouter taxa, a finding supported by recent molecular phylogenies. Finally, when converted into temporally scaled speciation rates and species longevities, the estimates produced by the neutral model seem implausible. The apparent departure from neutrality in the turnover of species between some sites and the implausible temporal dynamics may be due to the particular model chosen and does not reduce the significance of our other results, which confirm that local dispersal limitation, coupled with broader scale edaphic fidelity, combine to structure this biodiverse metacommunity.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号