全文获取类型
收费全文 | 246篇 |
免费 | 5篇 |
学科分类
生物科学 | 251篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 8篇 |
2021年 | 14篇 |
2020年 | 8篇 |
2019年 | 35篇 |
2018年 | 14篇 |
2017年 | 2篇 |
2016年 | 13篇 |
2015年 | 6篇 |
2014年 | 13篇 |
2013年 | 15篇 |
2012年 | 9篇 |
2011年 | 10篇 |
2010年 | 6篇 |
2009年 | 4篇 |
2008年 | 5篇 |
2007年 | 7篇 |
2006年 | 16篇 |
2005年 | 4篇 |
2004年 | 4篇 |
2003年 | 2篇 |
2002年 | 1篇 |
1998年 | 1篇 |
1994年 | 1篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 5篇 |
1975年 | 4篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1970年 | 2篇 |
1967年 | 2篇 |
1964年 | 1篇 |
排序方式: 共有251条查询结果,搜索用时 15 毫秒
31.
Ruofan Wang Camille R. Simoneau Jessie Kulsuptrakul Mehdi Bouhaddou Katherine A. Travisano Jennifer M. Hayashi Jared Carlson-Stevermer James R. Zengel Christopher M. Richards Parinaz Fozouni Jennifer Oki Lauren Rodriguez Bastian Joehnk Keith Walcott Kevin Holden Anita Sil Jan E. Carette Nevan J. Krogan Andreas S. Puschnik 《Cell》2021,184(1):106-119.e14
- Download : Download high-res image (157KB)
- Download : Download full-size image
32.
Foroumadi A Kargar Z Sakhteman A Sharifzadeh Z Feyzmohammadi R Kazemi M Shafiee A 《Bioorganic & medicinal chemistry letters》2006,16(5):1164-1167
Two series of 2- and 3-[5-(nitroaryl)-1,3,4-thiadiazol-2-ylthio, sulfinyl and sulfonyl] propionic acid alkyl esters were synthesized and screened for antituberculosis activity against Mycobacterium tuberculosis H37Rv using the BACTEC 460 radiometric system. The MIC values for the compounds showing more than 90% inhibition were determined. The result of comparison between two groups of data exhibited that among the synthesized derivatives, the compound propyl 3-[5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-ylthio]propionate was the most active one (MIC=1.56 microgml(-1)). 相似文献
33.
34.
Erfan Bahramnjead Soheil Kazemi Roodsari Nastaran Rahimi Payam Etemadi Iraj Aghaei Ahmad Reza Dehpour 《Neurochemical research》2018,43(11):2025-2037
Epilepsy is the third most common chronic brain disorder. Modafinil is an awakening agent approved for narcolepsy. In addition to its clinical uses some reports revealed that modafinil was associated with some alterations in seizure threshold. The purpose of this study was to clarify the effect of acute administration of modafinil in clonic seizure threshold (CST) induced by pentylenetetrazole in mice and the involvement of glutamate, nitric oxide, gamma amino butyric acid (GABA), and serotonin systems in this feature. Modafinil at 80 and 150 mg/kg showed anti- and pro-convulsant effects respectively and expressed maximum anti- and pro-convulsant activities at 30 min after injection. Both modulatory effects were blunted by pretreatment of l-NAME [nonspecific nitric oxide synthase (NOS) inhibitor; 10 mg/kg, i.p.], 7-nitroindazole (a neuronal NOS inhibitor; 40 mg/kg, i.p.), and aminoguanidine (an inducible NOS inhibitor; 50 mg/kg, i.p.). Injection of the NOS precursor l-arginine (60 mg/kg, i.p.) before modafinil did not change the anti-convulsant effect, while thoroughly reversed the pro-convulsant one. Our experiments displayed that administration of diazepam (a GABAA receptor agonist; 0.02 mg/kg, i.p.) and MK-801 (a NMDA receptor antagonist; 0.05 mg/kg, i.p.) before different doses of modafinil significantly increased CST. Finally, pretreatment of citalopram (a selective serotonin reuptake inhibitor; 0.1 mg/kg, i.p.) did not modify the convulsant activities of modafinil. Therefore, nitric oxide system may mediate anti-convulsant activity, while glutamate, nitric oxide, and GABA pathways may involve in pro-convulsant property. Serotonin receptors have no role on convulsant effects of modafinil. 相似文献
35.
Leila Gholami Mohsen Tafaghodi Bita Abbasi Majid Daroudi Reza Kazemi Oskuee 《Journal of cellular physiology》2019,234(2):1547-1559
Theranostic nanoparticles (NPs) are promising for opening new windows toward personalized disease management. Using a single particle capable of both diagnosis and drug delivery, is the major benefit of such particles. In the present study, chitosan NPs were used as a dual action carrier for doxorubicin (DOX; chemotherapeutic agent) and superparamagnetic iron oxide nanoparticles (SPIONs; imaging agent). SPIONs and DOX were loaded at different concentrations within poly-l -arginine-chitosan-triphosphate matrix (ACSD) using the ionic gelation method. NPs’ size were in the range of 184.33 ± 4.4 nm. Drug release analysis of DOX loaded NPs (NP-DOX) showed burst release at pH 5.5 (as in tumor environment) and slow release at pH 7.4 (physiological condition), demonstrating pH-sensitive drug release profile. NP-DOX internalization was confirmed by flowcytometry and fluorescent microscopy. Uptake process results were corroborated by accumulation of drug in the intracellular space. Iron content was evaluated by inductively coupled plasma and prussian blue staining. In vitro magnetic resonance imaging (MRI) showed a decline in T 2 relaxation times by increasing iron concentration. MRI analysis also confirmed uptake of NPs at the optimum concentration in C6 glioma cells. In conclusion, ACSD NPs could be utilized as a promising theranostic formulation for both diagnosis and treatment of glioblastoma. 相似文献
36.
Ehsan Gharib Reza Salmanipour Ehsan Nazemalhosseini Mojarad Mohammad Yaghoob Taleghani Saharnaz Sarlak Mona Malekzade-Moghani Parinaz Nasri Nasrabadi Mohammad Amin Meiary Hamid Asadzadeh Aghdaei Mohammad Reza Zali 《Journal of cellular physiology》2019,234(8):13137-13144
The human epidermal growth factor 2 (HER2) gene undergoes various mutations that could alter its activity or respond to the antibody therapies. Cetuximab, a known anti-EGFR monoclonal antibody (mAB), is widely administered in metastatic colorectal cancer (mCRC) cases. Here we identified mCRC patients who did not respond to cetuximab (500 mg/m2, q2w) after fluoropyrimidine/oxaliplatin regimen failure. Tumor samples were examined with immunohistochemistry for protein distribution, polymerase chain reaction (PCR) sequencing for mutation detection and real-time PCR for mRNA expression pattern analysis between cetuximab sensitive and resistance patients. The conformational differences of normal and mutated protein structures were predicted by bioinformatics analysis. The 5-year survival rates of target groups were estimated using the Kaplan–Meier method. Immunohistochemistry showed that all cases had high level of HER2 protein. No K-Ras or B-Raf mutation was observed among the study population; however, cetuximab resistance patients harbored a somatic mutation R784G at the exon 20 region of HER2 coding sequence. According to bioinformatics analysis, this mutation caused a notable misfold in protein conformation. Meanwhile, survival analysis showed R784G mutated mCRC patients had shortened survival rate compared with the mCRC cases with wild-type HER2. Collectively, these data report a new mechanism of resistance to cetuximab and might be applicable in modifying new therapeutic strategies for HER2 involved cancers. 相似文献
37.
Zonouzi R Ashtiani SK Hosseinkhani S Baharvand H 《Journal of biochemistry and molecular biology》2006,39(4):426-431
Embryonic stem cells (ESCs), representing a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics, are capable of spontaneous differentiation into cardiomyocytes. The present study sought to define the kinetic characterization of lactate dehydrogenase (LDH) and creatine kinase (CK) of ESC- and neonatal-derived cardiomyocytes. Spontaneously differentiated cardiomyocytes from embryoid bodies (EBs) derived from mouse ESC line (Royan B1) and neonatal cardiomyocytes were dispersed in a buffer solution. Enzymes were extracted by sonication and centrifugation for kinetic evaluation of LDH and CK with spectrophotometric methods. While a comparison between the kinetic properties of the LDH and CK of both groups revealed not only different Michaelis constants and optimum temperatures for LDH but also different Michaelis constants and optimum pH for CK, the pH profile of LDH and optimum temperature of CK were similar. In defining some kinetic properties of cardiac metabolic enzymes of ESC-derived cardiomyocytes, our results are expected to further facilitate the use of ESCs as an experimental model. 相似文献
38.
Hamidreza Hashemi Somayeh Pouyanfard Mojgan Bandehpour Zahra Noroozbabaei Bahram Kazemi Xavier Saelens Talat Mokhtari-Azad 《PloS one》2012,7(9)
Considering the emergence of highly pathogenic influenza viruses and threat of worldwide pandemics, there is an urgent need to develop broadly-protective influenza vaccines. In this study, we demonstrate the potential of T7 bacteriophage-based nanoparticles with genetically fused ectodomain of influenza A virus M2 protein (T7-M2e) as a candidate universal flu vaccine. Immunization of mice with non-adjuvanted T7-M2e elicited M2e-specific serum antibody responses that were similar in magnitude to those elicited by M2e peptide administered in Freund’s adjuvant. Comparable IgG responses directed against T7 phage capsomers were induced following vaccination with wild type T7 or T7-M2e. T7-M2e immunization induced balanced amounts of IgG1 and IgG2a antibodies and these antibodies specifically recognized native M2 on the surface of influenza A virus-infected mammalian cells. The frequency of IFN-γ-secreting T cells induced by T7-M2e nanoparticles was comparable to those elicited by M2e peptide emulsified in Freund’s adjuvant. Emulsification of T7-M2e nanoparticles in Freund’s adjuvant, however, induced a significantly stronger T cell response. Furthermore, T7-M2e-immunized mice were protected against lethal challenge with an H1N1 or an H3N2 virus, implying the induction of hetero-subtypic immunity in our mouse model. T7-M2e-immunized mice displayed considerable weight loss and had significantly reduced viral load in their lungs compared to controls. We conclude that display of M2e on the surface of T7 phage nanoparticles offers an efficient and economical opportunity to induce cross-protective M2e-based immunity against influenza A. 相似文献
39.
Seyyede Sanam Kazemi Shahandashti Reza Maali Amiri Hassan Zeinali Seyyede Sanaz Ramezanpour 《Molecular biology reports》2013,40(2):893-903
Plant cells often increase cold tolerance by reprogramming their genes expression which results in adjusted metabolic alternations, a process enhanced under cold acclimation (CA) phase. In present study, we assessed the changes of membrane fatty acid compositions and defense machine (like antioxidative enzymes) along with damage indexes like electrolyte leakage index (ELI) and malondialdehyde (MDA) during CA, cold stress (CS) and recovery (R) phases in chickpea (Cicer arietinum L.). Results showed an increase in unsaturated fatty acids ratio compare to saturated ones which is a sign of cold tolerance especially after CA phase. Antioxidant enzymes had an important role during CA and R phases while CS affected their activity which can be a sign for associating other metabolites or enzymes activities to create cold tolerance in plants. To investigation of enzymes assay under experimental treatments, the expression pattern of some enzymes including superoxide dismutase (sod), catalase (cat) and lipoxygenase (lox) was studied using quantitative real time PCR. LOX activity has shown a bilateral behavior: a positive relation with membrane damage index in CA and an interesting link with double bond index (DBI) in CS indicating probably its role in secondary metabolites like jasmonic acid signaling pathway. It was suggested that increased DBI and low LOX activity under CS could be a reason for plant cold tolerance. 相似文献
40.
Ensieh Sajadi Sara Dadras Mohammad Bayat Shabnam Abdi Hamid Nazarian Sanaz Ziaeipour Fatemeh Mazini Mahsa Kazemi Mohammad Bagheri Aida Valizadeh Mohammad-Amin Abdollahifar 《Journal of cellular biochemistry》2019,120(10):17312-17325
The current study was conducted to assess the relationship between testicular cells in spermatogenesis, through which the production of healthy and mature sperm is essential. However, it seems necessary to obtain more information about the three-dimensional pattern of the testis cells arrangement, which is directly related to the function of the testis after induction of diabetes. Twelve adult mice (28-30 g) were assigned into two experimental groups: (1) control and (2) diabetic (40 mg/kg STZ). The epididymal sperm collected from the tail of the epididymis and testes samples were taken for stereology, immunocytochemistry and RNA extraction. Our data showed that diabetes could notably decrease the number of testicular cells, together with a reduction of total sperm count. In addition, the results from the second-order stereology indicated the significant changes in the spatial arrangement of Sertoli cells and spermatogonial cells in the diabetic groups, in comparison with the control (P < .05). Moreover, the immunohistochemistry results showed a significant reduction in Sex-determining Region Y (SRY) box 9 gene (SOX9), vimentin, occludin, and connexin-43 positive cells in the diabetic groups compared with the control (P < .05). Furthermore, our data showed that the expression of steroidogenic acute regulatory protein steroidogenic acute regulatory protein (StAR) and peripheral benzodiazepine receptor peripheral benzodiazepine receptor (PBR) was significantly reduced in the diabetic groups, in comparison with the control (P < .05). These findings suggest that structural and functional changes of testis cells after induction of diabetes cause the alterations in the spatial arrangement of Sertoli and spermatogonial cells, ultimately influencing the normal spermatogenesis in mice. 相似文献