首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6468篇
  免费   399篇
  国内免费   1篇
生物科学   6868篇
  2023年   27篇
  2022年   60篇
  2021年   89篇
  2020年   77篇
  2019年   84篇
  2018年   131篇
  2017年   100篇
  2016年   180篇
  2015年   265篇
  2014年   349篇
  2013年   491篇
  2012年   563篇
  2011年   498篇
  2010年   329篇
  2009年   280篇
  2008年   425篇
  2007年   375篇
  2006年   369篇
  2005年   329篇
  2004年   340篇
  2003年   338篇
  2002年   313篇
  2001年   64篇
  2000年   59篇
  1999年   61篇
  1998年   61篇
  1997年   57篇
  1996年   56篇
  1995年   45篇
  1994年   59篇
  1993年   41篇
  1992年   39篇
  1991年   27篇
  1990年   24篇
  1989年   18篇
  1988年   18篇
  1987年   15篇
  1986年   11篇
  1985年   16篇
  1984年   15篇
  1983年   22篇
  1982年   15篇
  1981年   26篇
  1980年   21篇
  1979年   13篇
  1978年   6篇
  1977年   17篇
  1976年   6篇
  1975年   7篇
  1974年   9篇
排序方式: 共有6868条查询结果,搜索用时 15 毫秒
991.
Under the hypotheses of a structurally related binding site for antagonists of G‐protein coupled receptors and the ability of cyclic pentapeptides of chiral sequence D 1L 2D 3D 4L 5 to form rigid structures with which probe the pharmacophoric specificity of these receptors, inhibitors of substance P were designed based on available structure–activity relationships. ITF 1565, cyclo[D ‐Trp1‐Pro2‐D ‐Lys3‐D ‐Trp4‐Phe5], antagonized substance P activity mediated by type 1 neurokinin receptor (NK1) whereas it acted weakly against NK2 and did not inhibit endothelin at all. The preferential conformation of the peptide was obtained from nmr spectroscopy and computer calculations, and shown to contain the same βII‐turn and γ′‐turn found in other cyclic pentapeptides with the same chiral sequence. The structure of the peptide was compared with that of the β‐D ‐glucose molecule that has been proposed as a semirigid scaffold for antagonists of G‐protein coupled receptors. The γ′‐turn of the cyclic peptide superimposed well with β‐D ‐glucose in the chair conformation. Furthermore, when the side chains were considered, the aromatic groups of the two molecules were found to generally overlap. These results support the view of G‐protein coupled receptors as possessing structurally similar binding sites for antagonists and suggest that cyclic pentapeptides of chiral sequence D 1L 2D 3D 4L 5 may be useful as semirigid scaffolds for the design of antagonists of this family of receptors. © 1999 John Wiley & Sons, Inc. Biopoly 50: 211–219, 1999  相似文献   
992.
993.
994.
Physiological measurements were used to investigate the dependence of photosynthesis on light, temperature, and intercellular carbon dioxide (CO2) levels in the C4 marsh grass Spartina alterniflora. Functional relationships between these environmental variables and S. alterniflora physiological responses were then used to improve C4-leaf photosynthesis models. Field studies were conducted in monocultures of S. alterniflora in Virginia, USA. On average, S. alterniflora exhibited lower light saturation values (~1000 μmol m−2 s−1) than observed in other C4 plants. Maximum carbon assimilation rates and stomatal conductance to water vapor diffusion were 36 μmol (CO2) m−2 s−1 and 200 mmol (H2O) m−2 s−1, respectively. Analysis of assimilation-intercellular CO2 and light response relationships were used to determine Arrhenius-type temperature functions for maximum rate of carboxylation (V cmax), phosphoenolpyruvate carboxylase activity (V pmax), and maximum electron transport rate (J max). Maximum V cmax values of 105 μmol m−2 s−1 were observed at the leaf temperature of 311 K. Optimum V pmax values (80.6 μmol m−2 s−1) were observed at the foliage temperature of 308 K. The observed V pmax values were lower than those in other C4 plants, whereas V cmax values were higher, and more representative of C3 plants. Optimum J max values reached 138 μmol (electrons) m−2 s−1 at the foliage temperature of 305 K. In addition, the estimated CO2 compensation points were in the range of C3 or C3–C4 intermediate plants, not those typical of C4 plants. The present results indicate the possibility of a C3–C4 intermediate or C4-like photosynthetic mechanism rather than the expected C4-biochemical pathway in S. alterniflora under field conditions. In a scenario of atmospheric warming and increased atmospheric CO2 concentrations, S. alterniflora will likely respond positively to both changes. Such responses will result in increased S. alterniflora productivity, which is uncharacteristic of C4 plants.  相似文献   
995.
996.
Voltage-gated sodium channels (NaVs) underlie the upstroke of the action potential in the excitable tissues of nerve and muscle. After opening, NaVs rapidly undergo inactivation, a crucial process through which sodium conductance is negatively regulated. Disruption of inactivation by inherited mutations is an established cause of lethal cardiac arrhythmia, epilepsy, or painful syndromes. Intracellular calcium ions (Ca2+) modulate sodium channel inactivation, and multiple players have been suggested in this process, including the cytoplasmic NaV C-terminal region including two EF-hands and an IQ motif, the NaV domain III-IV linker, and calmodulin. Calmodulin can bind to the IQ domain in both Ca2+-bound and Ca2+-free conditions, but only to the DIII-IV linker in a Ca2+-loaded state. The mechanism of Ca2+ regulation, and its composite effect(s) on channel gating, has been shrouded in much controversy owing to numerous apparent experimental inconsistencies. Herein, we attempt to summarize these disparate data and propose a novel, to our knowledge, physiological mechanism whereby calcium ions promote sodium current facilitation due to Ca2+ memory at high-action-potential frequencies where Ca2+ levels may accumulate. The available data suggest that this phenomenon may be disrupted in diseases where cytoplasmic calcium ion levels are chronically high and where targeted phosphorylation may decouple the Ca2+ regulatory machinery. Many NaV disease mutations associated with electrical dysfunction are located in the Ca2+-sensing machinery and misregulation of Ca2+-dependent channel modulation is likely to contribute to disease phenotypes.  相似文献   
997.
Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats.  相似文献   
998.
Lowering the pH of the incubation medium to pH 5.4 leads to grana formation morphologically similar to that induced by metal cations. The same phenomenon is observed in EDTA-washed chloroplasts, indicating that it is not due in part to electrostatic ‘masking’ by residual cations associated with the membranes. Digitonin fractionation studies have indicated that the distribution of the major chlorophyll-protein complexes between granal and stromal membrane regions is similar at pH 5.4 in the absence of Mg2+, and at pH 7.4 in the presence of Mg2+. Chlorophyll fluorescence induction studies have indicated that the primary photochemistry of Photosystem II (PS II) is stimulated by lowering the pH to 5.4, just as it is upon metal cation addition at higher pH values. The failure to observe such an increase at pH 5.4 by measuring electron transport to ferricyanide is attributed to a combination of an inhibition by this pH of electron transport at a site after Q reduction and an increase in the number of PS II centres detached from the plastoquinone pool. We conclude that the stacked configuration of chloroplast membranes leads to increased PS II primary photochemistry, which is most simply explained in terms of a redistribution of excitation energy towards PS II.  相似文献   
999.
In brain mitochondria, phosphate- and Ca2+-dependent cytocrome c (cyt c) release reveals pools that interact differently with the inner membrane. Detachment of the phosphate-dependent pool did not influence the pool released by Ca2+. Cyt c pools were also detected in a system of cyt c reconstituted in cardiolipin (CL) liposomes. Gradual binding of cyt c (1 nmol) to CL/2–[12-(7-nitrobenz- 2-oxa-1,3-diazol-4-yl)amino]dodecanoyl-1-hexadecan oyl-sn-glycero-3-phosphocholine (NBDC12-HPC) liposomes (10 nmol) produced NBD fluorescence quenching up to 0.4 nmol of added protein. Additional bound cyt c did not produce quenching, suggesting that cyt c-CL interactions originate distinct cyt c pools. Cyt c was removed from CL/NBDC12-HPC liposomes by either phosphate or Ca2+, but only Ca2+ produced fluorescence dequenching and leakage of encapsulated 8-aminonaphthalene-1,3,6-trisulfonic acid/p-xylene-bis-pyridinium bromide. In mitochondria, complex IV activity and mitochondrial membrane potential (Δψm) were not affected by the release of the phosphate-dependent cyt c pool. Conversely, removal of cyt c by Ca2+ caused inhibition of complex IV activity and impairment of Δψm. In a reconstituted system of mitochondria, nuclei and supernatant, cyt c detached from the inner membrane was released outside mitochondria and triggered events leading to DNA fragmentation. These events were prevented by enriching mitochondria with exogenous CL or by sequestering released cyt c with anti-cyt c antibody.  相似文献   
1000.
The role of NKT cells on antitumor activity of CpG oligodeoxynucleotides (ODNs) was evaluated by peritumoral injections of CpG-ODNs in s.c. melanoma-bearing mice of strains differing in the number of NKT cells (athymic nude mice, recombination-activating gene(-/-)/transgenic V(alpha)14/Vbeta8.2 mice that generate NKT cells; J(alpha)281(-/-) mice and CD1(-/-) mice, which both have a strongly reduced number of NKT cells; and C57BL/6 wild-type mice). Tumor growth was significantly inhibited in strains enriched or depleted of NKT cells. The two murine strains having a reduced number of NKT cells differed significantly in the CpG-dependent tumor growth inhibition: in J(alpha)281(-/-) mice this inhibition was superimposable to that observed in C57BL/6 mice, while in CD1(-/-) mice the inhibition was dramatic. The increased tumor inhibition in CD1(-/-) correlated with a significantly higher ratio of IFN-gamma-IL-4 production in response to CpG as compared with C57BL/6 and J(alpha)281(-/-) mice. Experiments in which preparations of APCs and lymphocytes of the three strains were mixed showed that in the presence of APCs not expressing CD1, the production of CpG-ODN-induced type 1 cytokines was higher. Phenotype analysis of IFN-gamma- and IL-4-producing cells revealed that the differences between CD1(-/-) and C57BL/6 in the production of these two cytokines were mainly due to CD3(+) T lymphocytes. These data point to a regulatory role for the CD1 molecule in antitumor activity induced by danger signals, independently of V(alpha)14 NKT cells. The identification of a CD1-dependent suppressive subpopulation(s) might have important implications for the study of tolerance in the context of cancer, autoimmunity, and transplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号