首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1290篇
  免费   82篇
生物科学   1372篇
  2023年   7篇
  2022年   17篇
  2021年   38篇
  2020年   20篇
  2019年   32篇
  2018年   47篇
  2017年   27篇
  2016年   39篇
  2015年   49篇
  2014年   77篇
  2013年   79篇
  2012年   68篇
  2011年   79篇
  2010年   53篇
  2009年   45篇
  2008年   48篇
  2007年   70篇
  2006年   41篇
  2005年   50篇
  2004年   30篇
  2003年   33篇
  2002年   31篇
  2001年   19篇
  2000年   24篇
  1999年   14篇
  1997年   6篇
  1995年   9篇
  1994年   9篇
  1992年   11篇
  1991年   25篇
  1990年   16篇
  1989年   23篇
  1988年   11篇
  1987年   9篇
  1986年   9篇
  1985年   16篇
  1984年   21篇
  1983年   10篇
  1982年   17篇
  1981年   10篇
  1980年   10篇
  1979年   22篇
  1978年   10篇
  1977年   14篇
  1975年   13篇
  1974年   6篇
  1973年   10篇
  1972年   9篇
  1971年   7篇
  1969年   5篇
排序方式: 共有1372条查询结果,搜索用时 15 毫秒
141.
142.
143.
144.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
145.
Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production.  相似文献   
146.
Several nanoparticle platforms are currently being developed for applications in medicine, including both synthetic materials and naturally occurring bionanomaterials such as viral nanoparticles (VNPs) and their genome-free counterparts, virus-like particles (VLPs). A broad range of genetic and chemical engineering methods have been established that allow VNP/VLP formulations to carry large payloads of imaging reagents or drugs. Furthermore, targeted VNPs and VLPs can be generated by including peptide ligands on the particle surface. In this article, we highlight state-of-the-art virus engineering principles and discuss recent advances that bring potential biomedical applications a step closer. Viral nanotechnology has now come of age and it will not be long before these formulations assume a prominent role in the clinic.  相似文献   
147.
We designed a series of 25 3-(azol-1-yl)phenylpropanes which yielded 10 compounds (3, 4, 7, 8, 13, 14, 19, 21, 23, 26) that irreversibly immobilized 100% human sperm at 1% (w/v) concentration in 60 s; 12 compounds (8, 9, 15, 16, 19-21, 23-25, 27, 28) that showed potent microbicidal activity at 12.5-50 μg/mL against Trichomonas vaginalis; and 17 compounds (3-11, 13, 15, 19, 21, 23, 26, 28, 30) that exhibited potent anticandida activity with minimum inhibitory concentration (MIC) of 12.5-50 μg/mL. Almost all the compounds exhibited high level of safety towards normal vaginal flora (Lactobacillus) and human cervical (HeLa) cells in comparison to the marketed spermicide nonoxynol-9 (N-9). All the biological activities were evaluated in vitro. Two compounds (4, 8) with good safety profile exhibited multiple (spermicidal, antitrichomonas and anticandida) activities, warranting further lead optimization for furnishing a prophylactic vaginal contraceptive.  相似文献   
148.
Aims: Variant translocations involving 9q, 22q and at least one additional genomic locus occur in 5-10% of the patients with chronic myeloid leukemia (CML). The mechanisms for the formation of these variant translocations are not fully characterized. Here we report CML cases presenting a variant translocation indicating two-step mechanism with rare/novel chromosomal rearrangement. Methods: Karyotype analysis was performed on metaphases obtained through short-term cultures of bone marrow and blood. Detection of BCR-ABL fusion gene was performed using dual-color dual-fusion (D-FISH) and extra signal (ES) translocation probes. BAC-FISH was also carried out. Results: In Patient 1, the third partner chromosome was der(11)(p15) with a 2F2G1R signal pattern, which is an unusual signal pattern with the two-step mechanism. Patients 2 and 3 showed typical positive (2F1G1R) signal pattern. In Patient 2, both the chromosome 22s were involved in variant formation. The second fusion was observed below the BCR gene of the second homologue. In Patient 3 the third chromosome was der(13)(q14). The fourth patient showed a variant pattern with BCR/ABL-ES probe involving der(X)(q13) region. Conclusion: The presence of different rearrangements of both 9q34 and 22q11 regions highlights the genetic heterogeneity of this subgroup of CML. In each case with variants, further studies with FISH, BAC-FISH or more advanced technique such as microarray should be performed. Future studies should be performed to confirm the presence of true breakpoint hot spots and assess their implications in CML with variant Ph.  相似文献   
149.
150.
Karasneh GA  Ali M  Shukla D 《PloS one》2011,6(9):e25252
Herpes simplex virus type-1 (HSV-1) is a common human pathogen that relies heavily on cell-to-cell spread for establishing a lifelong latent infection. Molecular aspects of HSV-1 entry into host cells have been well studied; however, the molecular details of the spread of the virus from cell-to-cell remain poorly understood. In the past, the role of heparan sulfate proteoglycans (HSPG) during HSV-1 infection has focused solely on the role of HS chains as an attachment receptor for the virus, while the core protein has been assumed to perform a passive role of only carrying the HS chains. Likewise, very little is known about the involvement of any specific HSPGs in HSV-1 lifecycle. Here we demonstrate that a HSPG, syndecan-1, plays an important role in HSV-1 induced membrane fusion and cell-to-cell spread. Interestingly, the functions of syndecan-1 in fusion and spread are independent of the presence of HS on the core protein. Using a mutant CHO-K1 cell line that lacks all glycosaminoglycans (GAGs) on its surface (CHO-745) we demonstrate that the core protein of syndecan-1 possesses the ability to modulate membrane fusion and viral spread. Altogether, we identify a new role for syndecan-1 in HSV-1 pathogenesis and demonstrate HS-independent functions of its core protein in viral spread.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号