首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3739篇
  免费   232篇
  国内免费   2篇
生物科学   3973篇
  2023年   13篇
  2022年   20篇
  2021年   41篇
  2020年   17篇
  2019年   32篇
  2018年   29篇
  2017年   37篇
  2016年   72篇
  2015年   100篇
  2014年   140篇
  2013年   316篇
  2012年   191篇
  2011年   206篇
  2010年   152篇
  2009年   134篇
  2008年   223篇
  2007年   238篇
  2006年   236篇
  2005年   237篇
  2004年   213篇
  2003年   210篇
  2002年   200篇
  2001年   68篇
  2000年   74篇
  1999年   79篇
  1998年   36篇
  1997年   43篇
  1996年   28篇
  1995年   30篇
  1994年   19篇
  1993年   28篇
  1992年   48篇
  1991年   58篇
  1990年   35篇
  1989年   44篇
  1988年   28篇
  1987年   28篇
  1986年   30篇
  1985年   24篇
  1984年   27篇
  1983年   29篇
  1982年   24篇
  1981年   15篇
  1980年   9篇
  1979年   11篇
  1978年   14篇
  1977年   19篇
  1976年   10篇
  1975年   14篇
  1974年   10篇
排序方式: 共有3973条查询结果,搜索用时 15 毫秒
991.
The major histocompatibility complex (MHC) region of the teleost medaka (Oryzias latipes) contains two classical class I loci, UAA and UBA, whereas most lower vertebrates possess or express a single locus. To elucidate the allelic diversification and evolutionary relationships of these loci, we compared the BAC-based complete genomic sequences of the MHC class I region of three medaka strains and the PCR-based cDNA sequences of two more strains and two wild individuals, representing nine haplotypes. These were derived from two geographically distinct medaka populations isolated for four to five million years. Comparison of the genomic sequences showed a marked diversity in the region encompassing UAA and UBA even between the strains derived from the same population, and also showed an ancient divergence of these loci. cDNA analysis indicated that the peptide-binding domains of both UAA and UBA are highly polymorphic and that most of the polymorphisms were established in a locus-specific manner before the divergence of the two populations. Interallelic recombination between exons 2 and 3 encoding these domains was observed. The second intron of the UAA genes contains a highly conserved region with a palindromic sequence, suggesting that this region contributed to the recombination events. In contrast, the α3 domain is extremely homogenized not only within each locus but also between UAA and UBA regardless of populations. Two lineages of the transmembrane and cytoplasmic regions are also shared by UAA and UBA, suggesting that these two loci evolved with intimate genetic interaction through gene conversion or unequal crossing over.  相似文献   
992.
Asthma is a chronic inflammatory airway disease characterized by airway hyperreactivity, increased mucus production, and reversible airway contraction. Asthma is a complex genetic trait caused by environmental factors in genetically predisposed individuals. The transportation of maternal antigen-specific IgG via amniotic fluid, placenta and breast milk plays an important role in passive immunity. First, to examine whether maternal passive immunity by the transportation of antigen-specific IgG via FcRn regulates allergic airway inflammation, ovalbumin-immunized FcRn+/− female mice were bred with FcRn−/− male mice to evaluate the degree of ovalbumin-induced allergic airway inflammation of FcRn−/− offspring. Maternal passive immunity regulated allergic airway inflammation in an FcRn-dependent manner. Second, to examine the role of maternal antigen-specific IgG1 injection into mothers, we intravenously injected ovalbumin-specific IgG1 into wild-type or FcRn+/− mice immediately after they gave birth. The offspring were sensitized and challenged with ovalbumin. Antigen-specific IgG1 administered to lactating mice reduced allergic airway inflammation in their offspring in an FcRn-dependent manner. Last, to exclude the factor of maternal passive immunity other than ovalbumin-specific IgG1, we administered ovalbumin-specific IgG1 orally to offspring after birth. Oral administration of ovalbumin-specific IgG1 to offspring during the lactating period prevented the development of allergic airway inflammation in an FcRn-dependent manner. These data show that the transfer of maternal antigen-specific IgG regulates the development of allergic airway inflammation early in life in an FcRn-dependent manner.  相似文献   
993.
AimsSex-specific medicine has been highlighted as a different approach to the diagnosis and treatment of diseases between men and women. Type 2 diabetes has been reported to be a risk factor for cognitive impairment. Here, we investigated the sex difference in cognitive function associated with diabetes using KKAy mice.Main methodsCognitive function was evaluated by shuttle avoidance test and Morris water maze test. Changes in gene expression in the brain were evaluated by PCR array and confirmed by quantitative RT-PCR. To evaluate the effect of estradiol, some female KKAy were ovariectomized and treated with or without estradiol.Key findingsIn KKAy mice, female significantly exhibited impaired cognitive function compared with male, while there was no sex difference in these cognitive functions in C57BL6, wild-type mice. Female KKAy mice showed hyperinsulinemia, impaired glucose tolerance and increased oxidative stress compared with male KKAy mice. Female KKAy also showed a significant decrease in peroxisome proliferators-activated receptor (PPAR)-γ expression in the brain compared with male KKAy. Estradiol treatment improved the insulin resistance and higher superoxide production, but failed to improve the cognitive task performance, serum insulin level and lower expression of PPAR-γ.SignificanceIn diabetic mice, female showed significantly impaired cognitive function, with greater insulin resistance, lower expression of PPAR-γ and higher superoxide production compared with male. Estrogen had little effect on cognitive function. These results indicate that a sex-specific approach to cognitive impairment is necessary for diabetic patients, especially for women.  相似文献   
994.
Lettuce big-vein disease is caused by Mirafiori lettuce virus (MiLV), which is vectored by the soil-borne fungus Olpidium brassicae. A MiLV-resistant transgenic lettuce line was developed through introducing inverted repeats of the MiLV coat protein (CP) gene. Here, a detailed characterization study of this lettuce line was conducted by comparing it with the parental, non-transformed ‘Kaiser’ cultivar. There were no significant differences between transgenic and non-transgenic lettuce in terms of pollen fertility, pollen dispersal, seed production, seed dispersal, dormancy, germination, growth of seedlings under low or high temperature, chromatographic patterns of leaf extracts, or effects of lettuce on the growth of broccoli or soil microflora. A significant difference in pollen size was noted, but the difference was small. The length of the cotyledons of the transgenic lettuce was shorter than that of ‘Kaiser,’ but there were no differences in other morphological characteristics. Agrobacterium tumefaciens used for the production of transgenic lettuce was not detected in transgenic seeds. The transgenic T3, T4, and T5 generations showed higher resistance to MiLV and big-vein symptoms expression than the resistant ‘Pacific’ cultivar, indicating that high resistance to lettuce big-vein disease is stably inherited. PCR analysis showed that segregation of the CP gene was nearly 3:1 in the T1 and T2 generations, and that the transgenic T3 generation was homozygous for the CP gene. Segregation of the neomycin phosphotransferase II (npt II) gene was about 3:1 in the T1 generation, but the full length npt II gene was not detected in the T2 or T3 generation. The segregation pattern of the CP and npt II genes in the T1 generation showed the expected 9:3:3:1 ratio. These results suggest that the fragment including the CP gene and that including the npt II gene have been integrated into two unlinked loci, and that the T1 plant selected in our study did not have the npt II gene. DNA sequences flanking T-DNA insertions in the T2 generation were determined using inverse PCR, and showed that the right side of the T-DNA including the npt II gene had been truncated in the transgenic lettuce.  相似文献   
995.
996.
997.
Co-chaperone HOP (also called stress-inducible protein 1) is a co-chaperone that interacts with the cytosolic 70-kDa heat shock protein (HSP70) and 90-kDa heat shock protein (HSP90) families using different tetratricopeptide repeat domains. HOP plays crucial roles in the productive folding of substrate proteins by controlling the chaperone activities of HSP70 and HSP90. Here, we examined the levels of HOP, HSC70 (cognate of HSP70, also called HSP73), and HSP90 in the tumor tissues from colon cancer patients, in comparison with the non-tumor tissues from the same patients. Expression level of HOP was significantly increased in the tumor tissues (68% of patients, n = 19). Levels of HSC70 and HSP90 were also increased in the tumor tissues (95% and 74% of patients, respectively), and the HOP level was highly correlated with those of HSP90 (r = 0.77, p < 0.001) and HSC70 (r = 0.68, p < 0.01). Immunoprecipitation experiments indicated that HOP complexes with HSC70 or HSP90 in the tumor tissues. These data are consistent with increased formation of co-chaperone complexes in colon tumor specimens compared to adjacent normal tissue and could reflect a role for HOP in this process.  相似文献   
998.
The low‐density lipoprotein receptor‐related protein 1 (LRP1) is known as an endocytic and signal transmission receptor. We formerly reported the gene expression and the localization of LRP1 in cartilage tissue and chondrocytes, but its roles in the differentiation of chondrocytes remained to be investigated. Here, in order to address this issue, we employed RNAi strategy to knockdown lrp1 in chondrocytic cells and obtained findings indicating a critical role therein. As a result of lrp1 knockdown, aggrecan and col2a1 mRNA levels were decreased. However, that of col10a1 or mmp13 mRNA was rather increased. Under this condition, we performed a promoter assay for Axin2, which is known to be induced by activation of the WNT/β‐catenin (βcat) signaling pathway. Thereby, we found that Axin2 promoter activity was enhanced in the lrp1 knockdown cells. Furthermore, when the WNT/β–catenin pathway was activated in chondrocytic cells by WNT3a or SB216763, which inhibits the phosphorylation of GSK3β, the mRNA levels of aggrecan and col2a1 were decreased, whereas that of mmp13 was increased. Additionally, the level of phosphorylated protein kinase C (PKC) ζ was also decreased in the lrp1 knockdown cells. When the phosphorylation of PKCζ was selectively inhibited, aggrecan and col2a1 mRNA levels decreased, whereas the mmp13 mRNA level increased. These data demonstrate that LRP1 exerts remarkable effects to retain the mature phenotype of chondrocytes as a critical mediator of cell signaling. Our findings also indicate that the onset of hypertrophy during endochondral ossification appears to be particularly dependent on the WNT and PKC signaling initiated by LRP1. J. Cell. Physiol. 222:138–148, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
999.
Increased activity of Ser/Thr protein phosphatases types 1 (PP1) and 2A (PP2A) during maladaptive cardiac hypertrophy contributes to cardiac dysfunction and eventual failure, partly through effects on calcium metabolism. A second maladaptive feature of pressure overload cardiac hypertrophy that instead leads to heart failure by interfering with cardiac contraction and intracellular transport is a dense microtubule network stabilized by decoration with microtubule-associated protein 4 (MAP4). In an earlier study we showed that the major determinant of MAP4-microtubule affinity, and thus microtubule network density and stability, is site-specific MAP4 dephosphorylation at Ser-924 and to a lesser extent at Ser-1056; this was found to be prominent in hypertrophied myocardium. Therefore, in seeking the etiology of this MAP4 dephosphorylation, we looked here at PP2A and PP1, as well as the upstream p21-activated kinase 1, in maladaptive pressure overload cardiac hypertrophy. The activity of each was increased persistently during maladaptive hypertrophy, and overexpression of PP2A or PP1 in normal hearts reproduced both the microtubule network phenotype and the dephosphorylation of MAP4 Ser-924 and Ser-1056 seen in hypertrophy. Given the major microtubule-based abnormalities of contractile and transport function in maladaptive hypertrophy, these findings constitute a second important mechanism for phosphatase-dependent pathology in the hypertrophied and failing heart.  相似文献   
1000.
Pancreatic cancer is one of the leading causes of cancer-related death, and there is currently little hope of a cure because there are no effective biomarkers for its early detection. Therefore, the search for novel biomarkers that would allow the early detection of pancreatic cancer is ongoing. In this study, the differences between the metabolomes of pancreatic cancer patients with Stage III, Stage IVa, or Stage IVb disease (n = 20) and healthy volunteers (n = 9) were evaluated by metabolomics, which is the endpoint of the Omics cascade and therefore the last step in the cascade before the phenotype. In our experimental conditions using gas chromatography mass spectrometry (GC/MS), a total of 60 metabolites were detected in serum, and the levels of 18 of the 60 metabolites were significantly changed in pancreatic cancer patients compared with those in healthy volunteers. Then, Principal Component Analysis (PCA), which is a basic form of Multiple Classification Analysis, was performed, and the PCA scores plots based on the 60 metabolites highlighted the metabolomic differences between the pancreatic cancer patients and healthy volunteers. The differences between different stages of pancreatic cancer were also assessed by Partial Least Squares Discriminant Analysis (PLS-DA), which is one of Multiple Classification Analysis, and we found that it was possible to discriminate among the Stage III, Stage IVa, and Stage IVb groups. In addition, values of the 9 metabolites in 1 Stage I pancreatic cancer patient were similar to those obtained from the Stage III, Stage IVa, and Stage IVb pancreatic cancer patients. Our findings will aid the discovery of novel biomarkers that allow the early detection of pancreatic cancer by metabolomic approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号