首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
生物科学   72篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   10篇
  2004年   4篇
  2002年   9篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
41.
42.
Major results of the authors' findings on the implementation of biotechnological potential of aerobic methylobacteria and methanotrophs for obtaining forage proteins, biopolymers (polybutyrate and polysaccharides), enzymes (oxidoreductases), and bioprotectors (ectoin), as well as for degrading toxic C1 and Cn compounds have been reviewed. Unique features of the structural and functional organization of the metabolism of extremophilic (tolerant) methylotrophs are discussed, with a view for their prospective use in various fields of modern biotechnology, including biocatalysis and nanotechnology.  相似文献   
43.
Aerobic methanotrophic bacteria of cold ecosystems   总被引:2,自引:0,他引:2  
This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of specific signatures in cellular phospholipids and total DNAs extracted from environmental samples. Surprisingly, the phenotypic and genotypic markers of virtually all extant methanotrophs were detected in various cold habitats, such as underground waters, Northern taiga and tundra soils, polar lakes and permafrost sediments. Also, recent findings indicated that even after long-term storage in permafrost, some methanotrophs can oxidize and assimilate methane not only at positive but also at subzero temperatures. Pure cultures of psychrophilic and psychrotolerant methanotrophs were isolated and characterized as new genera and species: Methylobacter psychrophilus, Methylosphaera hansonii, Methylocella palustris, Methylocella silvestris, Methylocella tundrae, Methylocapsa acidiphila and Methylomonas scandinavica. However, our knowledge about their adaptive mechanisms and survival in cold ecosystems remains limited and needs to be established using both traditional and molecular microbiological methods.  相似文献   
44.
45.
New Thermophilic Methanotrophs of the Genus Methylocaldum   总被引:2,自引:2,他引:0  
Two pure cultures of obligate methanotrophs, strains H-11 and O-12, growing in the temperature range from 30 to 61°C with a optimum at 55°C were isolated from samples of silage and manure. Based on the results of analysis of the 16S rRNA genes and genes of membrane-bound methane monooxygenase, as well as on phenotypic properties, the isolates were assigned to the genus Methylocaldum. Significant temperature-dependent variations in morphology and phospholipid and fatty acid composition were revealed. Both strains assimilated methane carbon via the ribulose monophosphate, serine, and ribulose bisphosphate pathways. The activity of hexulosephosphate synthase was independent of the cultivation temperature; however, the activities of hydroxypyruvate reductase and ribulose bisphosphate carboxylase were higher in cells grown at 55°C than in cells grown at 37°C, indicating the important roles of the serine and ribulose bisphosphate pathways in the thermoadaptation of the strains under study. NH4 + assimilation occurred through reductive amination of -ketoglutarate and via the glutamate cycle. The relationship between the physiological and biochemical peculiarities of the isolates and their thermophilic nature is discussed.  相似文献   
46.
Extremophiles - Four enzymes involved in sucrose metabolism: sucrose phosphate synthase (Sps), sucrose phosphate phosphatase (Spp), sucrose synthase (Sus) and fructokinase (FruK), were obtained as...  相似文献   
47.
A number of vectors were constructed based on the plasmid from the broad range of pMHA200 hosts. Also, the expression of some key genes of the haloalkalitolerant methanotroph Methylomicrobium alcaliphilum 20Z was studied. The activities of the promoter regions of genes for hexulose phosphate synthase, glutamine synthetase, and glucokinase, as well as the promoter of the ectABC-ask operon, which encodes enzymes for osmoprotectant ectoine biosynthesis, were evaluated with the use of the gfp gene; the evaluation was proven to be ineffective. Conversely, glucokinase and a heterologous enzyme of chloramphenicol acetyltransferase were useful for the evaluation of promoter activity. In M. alcaliphilum 20Z cells, the expression level of chloramphenicol acetyltransferase transcribed from the methanol dehydrogenase promoter was higher as compared with that of glucokinase. This seems to be due to a regulatory mechanism for homologous protein expression. The introduction of a synthetic nucleotide sequence forming the secondary structure in the 5′ untranslated region of the glucokinase mRNA resulted in an increase of this enzyme level. This is the first attempt to use M. alcaliphilum 20Z for homo- and heterologous protein expression.  相似文献   
48.
Radioisotopic measurements of the methane consumption by mud samples taken from nine Southern Transbaikal soda lakes (pH 9.5–10.6) showed an intense oxidation of methane in the muds of Lakes Khuzhirta, Bulamai Nur, Gorbunka, and Suduntuiskii Torom, with the maximum oxidation rate in the mud of Lake Khuzhirta (33.2 nmol/(ml day)). The incorporation rate of the radioactive label from14CH4 into14CO2 was higher than into acid-stable metabolites. Optimum pH values for methane oxidation in water samples were 7–8, whereas mud samples exhibited two peaks of methane oxidation activity (at pH 8.15–9.4 and 5.8–6.0). The majority of samples could oxidize ammonium to nitrites; the oxidation was inhibited by methane. The PCR amplification analysis of samples revealed the presence of genes encoding soluble and paniculate methane monooxygenase and methanol dehydrogenase. Three alkaliphilic methanotrophic bacteria of morphotype I were isolated from mud samples in pure cultures, one of which, B5, was able to oxidize ammonium to nitrites at pH 7–11. The data obtained suggest that methanotrophs are widely spread in the soda lakes of Southern Transbaikal, where they can actively oxidize methane and ammonium.  相似文献   
49.
50.
Bivalve mollusks Bathymodiolus asoricus and Bathymodiolus puteoserpentis collected from the Rainbow and Logachev hydrothermal fields during dives of the Mir 1 and Mir 2 deep-sea manned submersibles were studied. Rates of methane oxidation and carbon dioxide assimilation in mussel gill tissue were determined by radiolabel analysis. During oxidation of 14CH4, radiocarbon was detected in significant quantities not only in carbon dioxide but also in dissolved organic matter, most notably 14C-formate and 14C-acetate, occurring in a 2 : 1 ratio. Activities of hexulose-phosphate synthase, phosphoribulokinase, and ribulose 1,5-bisphosphate carboxylase were shown in the soluble fraction of gill tissue cells. At the same time, no activity of hydroxypyruvate reductase—the key enzyme of the serine pathway of C1-assimilation—was detected. The results of PCR amplification using genetic probes for membrane-bound methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF) attest to the presence of the genes of these enzymes in the total DNA extracted from gill samples. However, no appropriate PCR responses were obtained with the mmoX primer system, which is a marker for soluble methane monooxygenase. All samples studied showed amplification with primers for the genera Methylobacter and Methylosphaera. At the same time, no genes specific to the genera Methylomonas, Methylococcus, Methylomicrobium, or MethylosinusandMethylocystis were detected. Electron microscopic examinations revealed the presence of two groups of endosymbiotic bacteria in the mussel gill tissue. The first group was represented by large cells possessing a complex system of cytoplasmic membranes, typical of methanotrophs of morphotype I. The other type of endosymbionts, having much smaller cells and lacking intracellular membrane structures, is likely to be constituted by sulfur bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号