首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12218篇
  免费   908篇
  国内免费   366篇
生物科学   13492篇
  2024年   26篇
  2023年   102篇
  2022年   289篇
  2021年   387篇
  2020年   289篇
  2019年   351篇
  2018年   404篇
  2017年   318篇
  2016年   424篇
  2015年   680篇
  2014年   791篇
  2013年   863篇
  2012年   1079篇
  2011年   1019篇
  2010年   642篇
  2009年   542篇
  2008年   730篇
  2007年   651篇
  2006年   535篇
  2005年   492篇
  2004年   510篇
  2003年   396篇
  2002年   316篇
  2001年   255篇
  2000年   211篇
  1999年   209篇
  1998年   96篇
  1997年   64篇
  1996年   55篇
  1995年   63篇
  1994年   59篇
  1993年   44篇
  1992年   81篇
  1991年   75篇
  1990年   55篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   25篇
  1984年   12篇
  1983年   17篇
  1982年   13篇
  1980年   21篇
  1979年   19篇
  1978年   13篇
  1977年   19篇
  1975年   14篇
  1974年   16篇
  1970年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
研究人参茎叶皂甙(GSL)对高胆固醇饮食大鼠心肌再灌注性心律失常(RPA_r)和脂质过氧化的影响。方法:将胆固醇乳剂用灌胃法饲养大鼠14d,建立高脂血症模型,各组大鼠进行心肌缺血再灌注实验,观察高脂血症和GSL对大鼠心肌缺血再灌注2h后血丙二醇(MDA),超氧化物歧化酶(SOD)和一氧化氮(NO)水平的影响和对再灌注性心律失常发生率的影响。结果显示:(1)用胆固醇乳剂饲养大鼠14d,成功建立高脂血症模型。同时给予GSL14d有明显降脂作用。(2)高脂血症状态下,心肌缺血再灌注2h后,血MDA升高(p<0.01),SOD降低(p<0.01)和NO(p<0.05)降低,再灌注10min内RPAr的发生率增高。(3)GSL组再灌注后2h的血MDA降低,而SOD和NO水平显著升高;使RPAr发生率大为降低,无VF发生。实验显示高脂血症加重心肌缺血再灌注损伤和提高RPAr发生率及动物死亡率,GSL可减少高脂饮食大鼠脂质过氧化和诱导体内NO生成而减轻缺血再灌注心肌损伤,降低缺血再灌注性心律失常发生率。  相似文献   
92.
研究L-茶氨酸对肝细胞损伤的保护作用及其机制。利用H2O2诱导的LO2肝细胞损伤模型,分别用MTT法检测细胞存活率、测定LDH、流式细胞术检测细胞凋亡率、Western blot法检测Caspase-3和PARP蛋白表达7LBax/Bcl-2比值的变化,评价L-茶氨酸是否能保护H2O2诱导的肝细胞损伤。结果表明,L-茶氨酸能提高H2O2损伤的L02细胞存活率,减少LDH的渗漏,降低肝细胞凋亡,且L-茶氨酸通过抑制caspase-3的激活和PARP的切割及Bax/Bcl-2比值的升高而发挥抗凋亡的作用。L-茶氨酸对肝细胞损伤有一定的治疗和保护作用。  相似文献   
93.
果蝇原生殖细胞特化的分子机制   总被引:2,自引:0,他引:2  
原生殖细胞在许多有性生殖动物的胚胎发育早期就已特化出来,并进一步分化为生殖细胞以产生新的子代。动物原生殖细胞的特化主要有生殖质决定和诱导两种模式,果蝇原生殖细胞的特化模式属于前者。研究表明,果蝇原生殖细胞特化过程中生殖质组装的关键基因是osk,其调控下游基因转录产物的定位和翻译,如vas和tud。此外,基因转录沉默是原生殖细胞特化过程的一个重要特征,其与生殖质中的成分如基因nos、gcl、pgc的表达产物密切相关。现对果蝇原生殖细胞特化分子机制进行综述。  相似文献   
94.
95.
Summary Virus-induced gene silencing (VIGS) is an extremely powerful tool for plant functional genomics. We used Tobacco rattle virus (TRV)-derived VIGS vectors expressed from binary vectors within Agrobacterium to induce RNA silencing in plants. Leaf infiltration is the most common method of agroinoculation used for VIGS but this method has limitations as it is laborious for large-scale screening and some plants are difficult to infiltrate. Here we have developed a novel and simple method of agroinoculation, called 'agrodrench', where soil adjacent to the plant root is drenched with an Agrobacterium suspension carrying the TRV-derived VIGS vectors. By agrodrench we successfully silenced the expression of phytoene desaturase (PDS), a 20S proteasome subunit (PB7) or Mg-protoporphyrin chelatase (Chl H) encoding genes in Nicotiana benthamiana and in economically important crops such as tomato, pepper, tobacco, potato, and Petunia, all belonging to the Solanaceae family. An important aspect of agrodrench is that it can be used for VIGS in very young seedlings, something not possible by the leaf infiltration method, which usually requires multiple fully expanded leaves for infiltration. We also demonstrated that VIGS functioned to silence target genes in plant roots. The agrodrench method of agroinoculation was more efficient than the leaf infiltration method for VIGS in roots. Agrodrench will facilitate rapid large-scale functional analysis of cDNA libraries and can also be applied to plants that are not currently amenable to VIGS technology by conventional inoculation methods.  相似文献   
96.
Traditional Chinese medicine (TCM) has a long history of development and application and has demonstrated on evidence basis its efficacy in the treatment of many diseases affecting multiple organ systems. In particular, TCM is effective in the prevention and treatment of chronic diseases and metabolic syndromes. However, the value of TCM has not been fully recognized worldwide due to the lack of definitive information of active ingredients in almost any TCM preparation. Novel functional genomics and proteomics approaches provide alternate perspectives on the mechanism of action of TCM. The target molecules on which TCM either activates or inactivates can be identified by functional genomics and proteomics, thus the affected critical signaling pathway cascades leading to effective recovery of chronic diseases can be studied. Several TCM preparations have been available for the treatment of liver fibrosis and cirrhosis, even advanced liver cirrhosis that has been shown to be irreversible and has no US-FDA approved therapy. In the TCM-treated livers with fibrosis and cirrhosis, some critical molecules that are significantly involved in the recovery can be identified through functional genomics and proteomics studies. These molecules become novel targets for drug discovery and development and candidates for the development of gene therapy. Gene therapy developed based on this strategy for the treatment of advanced liver fibrosis and cirrhosis in animal models has obtained promising results. This process thus establishes a herbogenomics approach to understand mechanisms of action of TCM and to identify effective molecular targets for the discovery and development of novel therapeutics.  相似文献   
97.
Vibrio anguillarum ghosts (VAG) were generated, for the first time, using a conjugation vector containing a ghost bacteria inducing cassette, pRK-λPR-cI-Elysis, in which the expression of PhiX174 lysis gene E was controlled by the P R /cI regulatory system of lambda phage. By scanning electron microscopy, holes ranging 80–200 nm in diameter were observed in the VAG. To avoid the presence of bacterial genomic DNA and an antibiotic resistance gene in the final VAG product, we constructed a new dual vector, pRK-λPR-cI-E-SNA, containing the E-mediated lysis cassette and the staphylococcal nuclease A (SNA)-mediated DNA degradation cassette, and generated safety-enhanced VAG for use as a fish vaccine.  相似文献   
98.
Recent studies have shown that some flavonoids are modulators of proinflammatory cytokine production. In this study, velutin, a unique flavone isolated from the pulp of açaí fruit (Euterpe oleracea Mart.), was examined for its effects in reducing lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in RAW 264.7 peripheral macrophages and mice peritoneal macrophages. Three other structurally similar and well-studied flavones, luteolin, apigenin and chrysoeriol, were included as controls and for comparative purposes. Velutin exhibited the greatest potency among all flavones in reducing TNF-α and IL-6 production. Velutin also showed the strongest inhibitory effect in nuclear factor (NF)-κB activation (as assessed by secreted alkaline phosphatase reporter assay) and exhibited the greatest effects in blocking the degradation of inhibitor of NF-κB as well as in inhibiting mitogen-activated protein kinase p38 and JNK phosphorylation; all of these are important signaling pathways involved in production of TNF-α and IL-6. The present study led to the discovery of a strong anti-inflammatory flavone, velutin. This compound effectively inhibited the expression of proinflammatory cytokines TNF-α and IL-6 in low micromole levels by inhibiting NF-κB activation and p38 and JNK phosphorylation.  相似文献   
99.
Summary Fed-batch culture was carried out to increase cell mass followed by batch culture for spore production ofbacillus thuringiensis. High cell mass obtained by increasing the feeding glucose concentration in constant fed-batch culture which supported fast cell growth resulted in good sporulation during subsequent batch culture, and the maximum cell mass of 72.6 g/L and spore concentration of 1.25×1010 spores/mL could be obtained.  相似文献   
100.
Recently, emerging evidence has suggested that carcinoma-associated fibroblasts (CAFs) could contribute to chemotherapy resistances in breast cancer treatment. The aim of this study is to compare the gene expression profiling of CAFs before and after chemotherapy and pick up candidate genes that might associate with chemotherapy resistance and could be used as predictors of treatment response. CAFs were cultured from surgically resected primary breast cancers and identified with immunohistochemistry (IHC) and Flow cytometry (FCM). MDA-MB-231 cells were cultured as the breast cancer cell line. Cell adhesion assay, invasion assay, and proliferation assay (MTT) were performed to compare the function of MDA-MB-231 cells co-cultured with CAFs and MDA-MB-231 cells without co-culture, after chemotherapy. Totally 6 pairs of CAFs were prepared for microarray analysis. Each pair of CAFs were obtained from the same patient and classified into two groups. One group was treated with Taxotere (regarded as after chemotherapy) while the other group was not processed with Taxotere (regarded as before chemotherapy). According to our study, the primary-cultured CAFs exhibited characteristic phenotype. After chemotherapy, MDA-MB-231 cells co-cultured with CAFs displayed increasing adhesion, invasiveness and proliferation abilities, compared with MDA-MB-231 cells without CAFs. Moreover, 35 differentially expressed genes (absolute fold change >2) were identified between CAFs after chemotherapy and before chemotherapy, including 17 up-regulated genes and 18 down-regulated genes. CXCL2, MMP1, IL8, RARRES1, FGF1, and CXCR7 were picked up as the candidate markers, of which the differential expression in CAFs before and after chemotherapy was confirmed. The results indicate the changes of gene expression in CAFs induced by Taxotere treatment and propose the candidate markers that possibly associate with chemotherapy resistance in breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号