首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4702篇
  免费   386篇
  国内免费   1篇
生物科学   5089篇
  2024年   4篇
  2023年   19篇
  2022年   60篇
  2021年   94篇
  2020年   79篇
  2019年   115篇
  2018年   152篇
  2017年   102篇
  2016年   191篇
  2015年   276篇
  2014年   332篇
  2013年   363篇
  2012年   465篇
  2011年   385篇
  2010年   280篇
  2009年   238篇
  2008年   339篇
  2007年   302篇
  2006年   270篇
  2005年   232篇
  2004年   247篇
  2003年   193篇
  2002年   157篇
  2001年   24篇
  2000年   19篇
  1999年   23篇
  1998年   40篇
  1997年   18篇
  1996年   14篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1974年   3篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有5089条查询结果,搜索用时 0 毫秒
61.

Background and aims

Exotic species, nitrogen (N) deposition, and grazing are major drivers of change in grasslands. However little is known about the interactive effects of these factors on below-ground microbial communities.

Methods

We simulated realistic N deposition increases with low-level fertilization and manipulated grazing with fencing in a split-plot experiment in California’s largest serpentine grassland. We also monitored grazing intensity using camera traps and measured total available N to assess grazing and nutrient enrichment effects on microbial extracellular enzyme activity (EEA), microbial N mineralization, and respiration rates in soil.

Results

Continuous measures of grazing intensity and N availability showed that increased grazing and N were correlated with increased microbial activity and were stronger predictors than the categorical grazing and fertilization measures. Exotic cover was also generally correlated with increased microbial activity resulting from exotic-driven nutrient cycling alterations. Seasonal effects, on abiotic factors and plant phenology, were also an important factor in EEA with lower activity occurring at peak plant biomass.

Conclusions

In combination with previous studies from this serpentine grassland, our results suggest that grazing intensity and soil N availability may affect the soil microbial community indirectly via effects on exotic cover and associated changes in nutrient cycling while grazing directly impacts soil community function.  相似文献   
62.
Microbial-surface display is the expression of proteins or peptides on the surface of cells by fusing an appropriate protein as an anchoring motif. Here, the outer membrane protein W (OmpW) was selected as a fusion partner for functional expression of Pseudomonas fluorescence SIK W1 lipase (TliA) on the cell-surface of Escherichia coli. Localization of the truncated OmpW-TliA fusion protein on the cell-surface was confirmed by immunoblotting and functional assay of lipase activity. Enantioselective hydrolysis of rac-phenylethyl butanoate by the displayed lipase resulted in optically active (R)-phenyl ethanol with 96 % enantiomeric excess and 44 % of conversion in 5 days. Thus, a small outer membrane protein OmpW, is a useful anchoring motif for displaying an active enzyme of ~50 kDa on the cell-surface and the surface-displayed lipase can be employed as an enantioselective biocatalyst in organic synthesis.  相似文献   
63.
Cilia in ciliated cells consist of protruding structures that sense mechanical and chemical signals from the extracellular environment. Cilia are assembled with variety molecules via a process known as intraflagellar transport (IFT). What controls the length of cilia in ciliated cells is critical to understand ciliary disease such as autosomal dominant polycystic kidney disease, which involves abnormally short cilia. But this control mechanism is not well understood. Previously, multiple tubular cysts have been observed in the kidneys of max-interacting protein 1 (Mxi1)-deficient mice aged 6 months or more. Here, we clarified the relationship between Mxi1 inactivation and cilia disassembly. Cilia phenotypes were observed in kidneys of Mxi1-deficient mice using scanning electron microscopy to elucidate the effect of Mxi1 on renal cilia phenotype, and cilia disassembly was observed in Mxi1-deficient kidney. In addition, genes related to cilia were validated in vitro and in vivo using quantitative PCR, and Ift20 was selected as a candidate gene in this study. The length of cilium decreased, and p-ERK level induced by a cilia defect increased in kidneys of Mxi1-deficient mice. Ciliogenesis of Mxi1-deficient mouse embryonic fibroblasts (MEFs) decreased, and this abnormality was restored by Mxi1 transfection in Mxi1-deficient MEFs. We confirmed that ciliogenesis and Ift20 expression were regulated by Mxi1 in vitro. We also determined that Mxi1 regulates Ift20 promoter activity via Ets-1 binding to the Ift20 promoter. These results indicate that inactivating Mxi1 induces ciliary defects in polycystic kidney.  相似文献   
64.
Metagenomic resources representing ruminal bacteria were screened for novel exocellulases using a robotic, high-throughput screening system, the novel CelEx-BR12 gene was identified and the predicted CelEx-BR12 protein was characterized. The CelEx-BR12 gene had an open reading frame (ORF) of 1140 base pairs that encoded a 380-amino-acid-protein with a predicted molecular mass of 41.8 kDa. The amino acid sequence was 83% identical to that of a family 5 glycosyl hydrolase from Prevotella ruminicola 23. Codon-optimized CelEx-BR12 was overexpressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The Michaelis–Menten constant (Km value) and maximal reaction velocity (Vmax values) for exocellulase activity were 12.92 μM and 1.55 × 104 μmol min−1, respectively, and the enzyme was optimally active at pH 5.0 and 37 °C. Multifunctional activities were observed against fluorogenic and natural glycosides, such as 4-methylumbelliferyl-β-d-cellobioside (0.3 U mg−1), CMC (105.9 U mg−1), birch wood xylan (132.3 U mg−1), oat spelt xylan (67.9 U mg−1), and 2-hydroxyethyl-cellulose (26.3 U mg−1). Based on these findings, we believe that CelEx-BR12 is an efficient multifunctional enzyme as endocellulase/exocellulase/xylanase activities that may prove useful for biotechnological applications.  相似文献   
65.
Despite the extensive use of propofol in general anesthetic procedures, the effects of propofol on glial cell were not completely understood. In lipopolysaccharide (LPS)-stimulated rat primary astrocytes and BV2 microglial cell lines, co-treatment of propofol synergistically induced inflammatory activation as evidenced by the increased production of NO, ROS and expression of iNOS, MMP-9 and several cytokines. Propofol augmented the activation of JNK and p38 MAPKs induced by LPS and the synergistic activation of glial cells by propofol was prevented by pretreatment of JNK and p38 inhibitors. When we treated BV2 cell culture supernatants treated with LPS plus propofol on cultured rat primary neuron, it induced a significant neuronal cell death. The results suggest that the repeated use of propofol in immunologically challenged situation may induce glial activation in brain.  相似文献   
66.
The Fms-like tyrosine kinase 3 (FLT3), a receptor tyrosine kinase, is involved in the proliferation, differentiation and apoptosis of hematopoietic cells. FLT3 is highly overexpressed in acute myeloid leukemia (AML) of the majority of patients. Screening for flavonoids including flavones, flavanones, flavonols, and flavanonols disclosed that luteolin was potent FLT3 enzyme inhibitor. Furthermore, luteolin suppressed cell proliferation in MV4;11 cells with constitutively activated FLT3.  相似文献   
67.
Four new lanostane triterpenes, butyl lucidenate P (1), butyl lucidenate D2 (2), butyl lucidenate E2 (3) and butyl lucidenate Q (4) along with 11 known compounds (515) were isolated from the fruiting bodies of Ganoderma lucidum. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against LPS-induced NO production in macrophage RAW 264.7 cells. Compounds 1, 3, 4, 9, 10 and 15 showed inhibitory potency with IC50 values of 7.4, 6.4, 4.3, 9.4, 9.2 and 4.5 μM, respectively. Compounds 1, 3 and 15 dose-dependently reduced the LPS-induced iNOS expressions. Preincubation of cell with 1, 3 and 15 significantly suppressed LPS-induced expression of COX-2 protein.  相似文献   
68.
Radiolytic transformation of the isoflavonoid rotenone (1) with γ-irradiation afforded two new degraded products, rotenoisins A (2) and (3). The structures of the two new rotenone derivatives were elucidated on the basis of spectroscopic methods. The new products 2 and 3 exhibited significantly enhanced inhibitory activities against pancreatic lipase and adipocyte differentiation in 3T3-L1 cells when compared to parent rotenone.  相似文献   
69.
Alzheimer’s disease drug discovery regarding exploration into the molecules and processes has focused on the intrinsic causes of the brain disorder correlated with the accumulation of amyloid-β. An anti-amyloidogenic bis-styrylbenzene derivative, KMS80013, showed excellent oral bioavailability (F = 46.2%), facilitated brain penetration (26%, iv) in mouse and target specific in vivo efficacy in acute AD mouse model attenuating the cognitive deficiency in Y-maze test. Acute toxicity (LD50 >2000 mg/kg) and hERG channel inhibition (14% at 10 μM) results indicated safety of KMS80013.  相似文献   
70.
The Tudor-sn protein, which contains four staphylococcal nuclease domains and a Tudor domain, is a ubiquitous protein found in almost all organisms. It has been reported that Tudor-sn in mammals participates in various cellular pathways involved in gene regulation, cell growth, and development. In insects, we have previously identified a Tudor-sn ortholog in the silkworm, Bombyx mori, and detected its interactions between with Argonaute proteins. The role of Tudor-sn in silkworm, however, still remains largely unknown. In this study, we demonstrated that silkworm Tudor-sn is a stress granule (SG) protein, and determined its interactions with other SG proteins using Bimolecular Fluorescence Complementation assay and Insect Two-Hybrid method. Depletions of Argonaute proteins and SG-marker protein Tia1 by RNAi impaired the involvement of Tudor-sn in the SG formation. Protein domain deletion analysis of Tudor-sn demonstrated that SN2 is the key domain required for the aggregation of Tudor-sn in SGs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号