首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95164篇
  免费   400篇
  国内免费   881篇
生物科学   96445篇
  2023年   36篇
  2022年   80篇
  2021年   122篇
  2020年   52篇
  2019年   61篇
  2018年   11896篇
  2017年   10713篇
  2016年   7530篇
  2015年   689篇
  2014年   388篇
  2013年   448篇
  2012年   4343篇
  2011年   12931篇
  2010年   12066篇
  2009年   8289篇
  2008年   9867篇
  2007年   11434篇
  2006年   334篇
  2005年   571篇
  2004年   1039篇
  2003年   1076篇
  2002年   832篇
  2001年   295篇
  2000年   188篇
  1999年   44篇
  1998年   29篇
  1997年   37篇
  1996年   18篇
  1995年   16篇
  1994年   15篇
  1993年   41篇
  1992年   36篇
  1991年   53篇
  1990年   15篇
  1989年   14篇
  1988年   30篇
  1987年   17篇
  1986年   11篇
  1985年   14篇
  1984年   16篇
  1983年   22篇
  1980年   10篇
  1978年   12篇
  1973年   10篇
  1972年   252篇
  1971年   277篇
  1965年   14篇
  1962年   28篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Starfish waste has been shown to be an effective compost material not only in the promotion of plant growth but also in terms of having insecticidal activity. In the present study, plant growth regulation by chemicals from starfish was examined. The aqueous fraction from a hot water extract of the starfish Asterias amurensis Lütken showed plant-growth activity, while the aqueous fraction from a methanol extract inhibited growth of Brassica campestris. The lipophilic fraction from the methanol extract also exhibited a plant growth-promoting effect. The active components from each extract were identified. Asterubine from the hot water extract promoted plant growth. A ceramide from the lipophilic fraction showed root growth promoting effect, and three glucocerebrosides had promotive effects on the entire plant. Asterosaponins were identified as the main growth inhibitors in the aqueous fraction of the methanol extract. These active compounds from starfish waste could be analyzed as potential plant growth regulators in agricultural applications in the future.  相似文献   
102.
This editorial addresses the debate concerning the origin of adult nucleus pulposus cells in the light of profiling studies by Minogue and colleagues. In their report of several marker genes that distinguish nucleus pulposus cells from other related cell types, the authors provide novel insights into the notochordal nature of the former. Together with recently published work, their work lends support to the view that all cells present within the nucleus pulposus are derived from the notochord. Hence, the choice of an animal model for disc research should be based on considerations other than the cell loss and replacement by non-notochordal cells.  相似文献   
103.
104.
105.
106.
107.

Background  

Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive.  相似文献   
108.
As an extension of our previous work we not only evaluated the relationship between acidosis and lipid peroxidation in rat's kidney homogenate, but also determined for the first time the potential anti-oxidant activity of diphenyl diselenide, diphenyl ditelluride and ebselen at a range of pH values (7.4–5.4). Because of the pH dependency of iron redox cycling, pH and iron need to be well controlled and for the reason we tested a number of pH values (from 7.4 to 5.4) to get a closer idea about the role of iron under various pathological conditions. Acidosis increased rate of lipid peroxidation in the absence Fe (II) in kidney homogenates especially at pH 5.4. This higher extent of lipid peroxidation can be explained by; the mobilized iron which may come from reserves where it is weakly bound. Addition of iron (Fe) chelator desferoxamine (DFO) to reaction medium completely inhibited the peroxidation processes at all studied pH values including acidic values (5.8–5.4). In the presence of Fe (II) acidosis also enhanced detrimental effect of Fe (II) especially at pH (6.4–5.4). Diphenyl diselenide significantly protected lipid peroxidation at all studied pH values, while ebselen offered only a small statistically non-significant protection. The highest anti-oxidant potency was observed for diphenyl ditelluride. These differences in potencies were explained by the mode of action of these compounds using their catalytic anti-oxidant cycles. However, changing the pH of the reaction medium did not alter the anti-oxidant activity of the tested compounds. This study provides evidence for acidosis catalyzed oxidative stress in kidney homogenate and for the first time anti-oxidant potential of diphenyl diselenide and diphenyl ditelluride not only at physiological pH but also at a range of acidic values.  相似文献   
109.

Background  

Meiotic prophase is a critical stage in sexual reproduction. Aberrant chromosome recombination during this stage is a leading cause of human miscarriages and birth defects. However, due to the experimental intractability of mammalian gonads, only a very limited number of meiotic genes have been characterized. Here we aim to identify novel meiotic genes important in human reproduction through computational mining of cross-species and cross-sex time-series expression data from budding yeast, mouse postnatal testis, mouse embryonic ovary, and human fetal ovary.  相似文献   
110.

Background  

Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS) is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号