首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13673篇
  免费   750篇
  国内免费   5篇
生物科学   14428篇
  2022年   86篇
  2021年   170篇
  2020年   98篇
  2019年   150篇
  2018年   132篇
  2017年   117篇
  2016年   264篇
  2015年   457篇
  2014年   510篇
  2013年   702篇
  2012年   830篇
  2011年   846篇
  2010年   543篇
  2009年   523篇
  2008年   742篇
  2007年   740篇
  2006年   646篇
  2005年   712篇
  2004年   683篇
  2003年   626篇
  2002年   612篇
  2001年   125篇
  2000年   102篇
  1999年   125篇
  1998年   173篇
  1997年   114篇
  1996年   104篇
  1995年   92篇
  1994年   92篇
  1993年   89篇
  1992年   97篇
  1991年   86篇
  1990年   82篇
  1989年   72篇
  1988年   76篇
  1987年   84篇
  1986年   86篇
  1985年   82篇
  1984年   123篇
  1983年   99篇
  1982年   123篇
  1981年   130篇
  1980年   144篇
  1979年   111篇
  1978年   104篇
  1977年   108篇
  1976年   85篇
  1975年   84篇
  1974年   93篇
  1973年   74篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
991.
Phosphorylase kinase (PhK), a Ca(2+)-dependent regulatory enzyme of the glycogenolytic cascade in skeletal muscle, is a 1.3 MDa hexadecameric oligomer comprising four copies of four distinct subunits, termed alpha, beta, gamma, and delta, the last being endogenous calmodulin. The structures of both nonactivated and Ca(2+)-activated PhK were determined to elucidate Ca(2+)-induced structural changes associated with PhK's activation. Reconstructions of both conformers of the kinase, each including over 11,000 particles, yielded bridged, bilobal structures with resolutions estimated by Fourier shell correlation at 24 A using a 0.5 correlation cutoff, or at 18 A by the 3sigma (corrected for D(2) symmetry) threshold curve. Extensive Ca(2+)-induced structural changes were observed in regions encompassing both the lobes and bridges, consistent with changes in subunit interactions upon activation. The relative placement of the alpha, beta, gamma, and delta subunits in the nonactivated three-dimensional structure, relying upon previous two-dimensional localizations, is in agreement with the known effects of Ca(2+) on subunit conformations and interactions in the PhK complex.  相似文献   
992.
Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures, we examined whether phospholipase A2 (PLA2) activity is involved in binge alcohol (ethanol)-induced neurodegeneration, and whether docosahexaenoic acid (DHA; 22:6n-3), a fish oil-enriched fatty acid that is anti-inflammatory in brain damage models, is neuroprotective. Assessed with propidium iodide and lactate dehydrogenase (LDH) leakage, neurodamage from ethanol (6 days 100 mM ethanol with four withdrawal periods) was prevented by the PLA2 pan-inhibitor, mepacrine. Also, ethanol-dependent neurodegeneration—particularly in the entorhinal region—was significantly ameliorated by DHA supplementation (25 μM); however, adrenic acid, a 22:4n-6 analog, was ineffective. Consistent with PLA2 activation, [3H] liberation was approximately fivefold greater in [3H]arachidonic acid-preloaded HEC slice cultures during ethanol withdrawal compared to controls, and DHA supplementation suppressed [3H] release to control levels. DHA might antagonize PLA2 activity directly or suppress upstream activators (e.g., oxidative stress); however, other DHA mechanisms could be important in subdueing ethanol-induced PLA2-dependent and independent neuroinflammatory processes.  相似文献   
993.
Evidence suggests that NK and NKT cells contribute to inflammation and mortality during septic shock caused by cecal ligation and puncture (CLP). However, the specific contributions of these cell types to the pathogenesis of CLP-induced septic shock have not been fully defined. The goal of the present study was to determine the mechanisms by which NK and NKT cells mediate the host response to CLP. Control, NK cell-deficient, and NKT cell-deficient mice underwent CLP. Survival, cytokine production, and bacterial clearance were measured. NK cell trafficking and interaction with myeloid cells was also studied. Results show that mice treated with anti-asialoGM1 (NK cell deficient) or anti-NK1.1 (NK/NKT cell deficient) show less systemic inflammation and have improved survival compared with IgG-treated controls. CD1 knockout mice (NKT cell deficient) did not demonstrate decreased cytokine production or improved survival compared with wild type mice. Trafficking studies show migration of NK cells from blood and spleen into the inflamed peritoneal cavity where they appear to facilitate the activation of peritoneal macrophages (F4-80(+)GR-1(-)) and F4-80(+)Gr-1(+) myeloid cells. These findings indicate that NK but not CD1-restricted NKT cells contribute to acute CLP-induced inflammation. NK cells appear to mediate their proinflammatory functions during septic shock, in part, by migration into the peritoneal cavity and amplification of the proinflammatory activities of specific myeloid cell populations. These findings provide new insights into the mechanisms used by NK cells to facilitate acute inflammation during septic shock.  相似文献   
994.
The cloning of a G protein-coupled, extracellular Ca2+ (Ca o 2+ )-sensing receptor (CaR) has afforded a molecular basis for a number of the known effects of Ca o 2+ on tissues involved in maintaining systemic calcium homeostasis, especially parathyroid gland and kidney. In addition to providing molecular tools for showing that CaR messenger RNA and protein are present within these tissues, the cloned CaR has permitted documentation that several human diseases are the result of inactivating or activating mutations of this receptor as well as generation of mice that have targeted disruption of the CaR gene. Characteristic changes in the functions of parathyroid and kidney in these patients as well as in the CaR “knockout” mice have elucidated considerably the CaR’s physiological roles in mineral ion homeostasis. Nevertheless, a great deal remains to be learned about how this receptor regulates the functioning of other tissues involved in Ca o 2+ metabolism, such as bone and intestine. Further study of these human diseases and of the mouse models will doubtless be useful in gaining additional understanding of the CaR’s roles in these latter tissues. Furthermore, we understand little of the CaR’s functions in tissues that are not directly involved in systemic mineral ion metabolism, where the receptor probably serves diverse other roles. Some of these functions may be related to the control of intra- and local extracellular concentrations of Ca2+, while others may be unrelated to either systemic or local ionic homeostasis. In any case, the CaR and conceivably additional receptors/sensors for Ca2+ or other extracellular ions represent versatile regulators of a wide variety of cellular functions and represent important targets for novel classes of therapeutics.  相似文献   
995.

Introduction

The MAINTAIN study is an on-going RCT comparing high-dose micronutrient and anti-oxidant supplementation versus recommended daily allowance (RDA) vitamins in slowing HIV immune deficiency progression in ART-naïve people with HIV infection.

Objective

We planned analysis of the first 127 participants to determine the baseline prevalence of serum micronutrient deficiencies and correlates, as well as tolerance and adherence to study interventions.

Methods

Participants receive eight capsules twice daily of 1) high-dose or 2) RDA supplements for two years and are followed-up quarterly for measures of immune deficiency progression, safety and tolerability. Regression analysis was used to identify correlates of micronutrient levels at baseline. Adherence was measured by residual pill count, self-report using the General Treatment Scale (GTS) and short-term recall HIV Adherence Treatment Scale (HATS).

Results

Prior micronutrient supplementation (within 30 days) was 27% at screening and 10% of study population, and was not correlated with baseline micronutrient levels. Low levels were frequent for carotene (24%<1 nmol/L), vitamin D (24%<40 nmol/L) and serum folate (20%<15 nmol/L). The proportion with B12 deficiency (<133 pmol/L) was 2.4%. Lower baseline levels of B12 correlated lower baseline CD4 count (r = 0.21, p = 0.02) with a 21 pmol/L reduction in B12 per 100 cells/µL CD4. Vitamin D levels were higher in men (p<0.001). After a median follow-up of 1.63 years, there were 19 (15%) early withdrawals from the study treatment. Mean treatment adherence using pill count was 88%. Subjective adherence by the GTS was 81% and was moderately but significantly correlated with pill count (r = 0.29, p<0.001). Adherence based on short-term recall (HATS) was >80% in 75% of participants.

Conclusion

Micronutrient levels in asymptomatic HIV+ persons are in keeping with population norms, but micronutrient deficiencies are frequent. Adherence levels are high, and will permit a valid evaluation of treatment effects.

Trial Registration

ClinicalTrials.gov NCT00798772  相似文献   
996.
Use of the progesterone (Pg) birth control depot medroxyprogesterone acetate (DMPA) increases a woman's risk for sexually transmitted infection with HIV or HSV-2 via unknown mechanisms. Plasmacytoid dendritic cells (pDCs) are circulating and tissue-resident sentinels capable of making large quantities of IFN-alpha upon recognizing viruses through TLRs 7 and 9. In this study, we show that Pg inhibits TLR9-induced IFN-alpha production by human and mouse pDCs and that DMPA impairs TLR9- and virus-induced IFN-alpha production by pDCs in mice, providing a potential explanation for how DMPA impairs innate antiviral immunity in women. Pg failed to inhibit the Mda-5 pathway of IFN-alpha induction in dendritic cells, suggesting that Pg regulates select antiviral DC programs. This may occur through selective blockade of IFN regulatory factor-7 activation, a novel steroid action. Thus, through inhibition of TLR-mediated IFN-alpha production by pDCs, Pg may regulate antiviral immunity.  相似文献   
997.
The objective of these investigations was to test the hypothesis that a rapid cytoplasmic release profile from nanoparticles would potentiate the anticancer activity of cisplatin. Cisplatin-loaded nanoparticles with pH-responsive poly[2-(N,N-diethylamino)ethyl methacrylate] (PDEA) cores were synthesized from PDEA-block-poly(ethylene glycol) (PDEA-PEG) copolymer by using a solvent-displacement (acetone-water) method. Nanoparticles with pH-nonresponsive poly(epsilon-caprolactone) (PCL) cores made from PCL-block-PEG (PCL-PEG) were used for comparison. Nanoparticle sizes, zeta potentials, drug-loading capacities, and pH responsiveness were characterized. The cellular uptakes and localization in lysosomes were visualized by using confocal fluorescence microscopy. Cytostatic effects of free and encapsulated cis-diammineplatinum(II) dichloride (cisplatin) toward human SKOV-3 epithelial ovarian cancer cells were estimated by using the MTT assay. Intraperitoneal tumor responses to cisplatin and cisplatin/PDEA-PEG were evaluated in athymic mice at 4-6 weeks postinoculation of SKOV-3 cells. PDEA-PEG nanoparticles dissolved at pH < 6 and rapidly internalized and transferred to lysosomes; it therefore was predicted that the PDEA nanoparticles would rapidly release cisplatin into cytoplasm upon integration into acidic lysosomes and thereby overwhelm the chemoresistant properties of SKOV-3 cells. Indeed, relative proportions of viable cells were diminished to a greater extent by exposure in vitro to fast-releasing nanoparticles compared to slow-releasing nanoparticles or an equivalent dose of free cisplatin. Incidences of cellular pyknosis (a morphological indicator of apoptosis) were most evident within intestinal/mesentery tumors of mice treated with cisplatin/PDEA-PEG; tumor burdens were correspondingly reduced.  相似文献   
998.
In the Streptozotocin-induced diabetic rat heart, a decrease in the conductivity and suppression of electrical cell-to-cell coupling were observed. To clarify this mechanism, the present study was performed to investigate alterations of the gap junction connexin 43 (C×43) using immunoblotting, immunohistochemistry, electron-microscopic analyses. An enhanced activation of PKCε, an augmentation of PKCε-mediated phosphorylation of C×43, a decrease in the total amount of C×43, a reduction in the area of immunoreactive particles for C×43 at the intercalated disk, distribution of C×43 to cell periphery or cytoplasm and the internalization∼annular profiles of the gap junction were all characteristically recognized in the diabetic heart. Such abnormalities in the expression of C×43 were alleviated by treatment with either lysosomal (NH4Cl, Leupeptin) or proteasomal inhibitor (ALLN). These results suggest that the PKCε-mediated hyperphosphorylation of C×43 makes C×43 vulnerable to proteolytic degradation and that a decrease in the conductivity in the diabetic heart is also caused by a decrease in the number of gap junction channels due to an acceleration of the proteolytic degradation of C×43. The remodeling of C×43 induced by the activation of PKCε may therefore contribute to the formation of the arrhythmogenic substrate in the diabetic heart. The cardioprotective effect of the remodeling of C×43 by PKCε is discussed.  相似文献   
999.
1000.

Background

Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.

Hypothesis

We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.

Methods and Results

We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP.

Conclusion

Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates NAFLD-associated vascular dysfunction; effects that are mediated by activation of SIRT1 gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号