首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913篇
  免费   58篇
  国内免费   1篇
生物科学   972篇
  2023年   8篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   14篇
  2018年   16篇
  2017年   14篇
  2016年   21篇
  2015年   40篇
  2014年   37篇
  2013年   64篇
  2012年   63篇
  2011年   50篇
  2010年   32篇
  2009年   19篇
  2008年   40篇
  2007年   46篇
  2006年   43篇
  2005年   43篇
  2004年   46篇
  2003年   41篇
  2002年   25篇
  2001年   20篇
  2000年   23篇
  1999年   21篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   8篇
  1992年   19篇
  1991年   13篇
  1990年   16篇
  1989年   16篇
  1988年   10篇
  1987年   8篇
  1986年   12篇
  1985年   4篇
  1984年   14篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
  1973年   6篇
  1971年   4篇
排序方式: 共有972条查询结果,搜索用时 15 毫秒
21.
H-NS is a major Escherichia coli nucleoid-associated protein involved in bacterial DNA condensation and global modulation of gene expression. This protein exists in cells as at least two different isoforms separable by isoelectric focusing. Among other phenotypes, mutations in hns result in constitutive expression of the proU and fimB genes, increased fimA promoter inversion rates, and repression of the flhCD master operon required for flagellum biosynthesis. To understand the relationship between H-NS structure and function, we transformed a cloned hns gene into a mutator strain and collected a series of mutant alleles that failed to repress proU expression. Each of these isolated hns mutant alleles also failed to repress fimB expression, suggesting that H-NS-specific repression of proU and fimB occurs by similar mechanisms. Conversely, alleles encoding single amino acid substitutions in the C-terminal DNA-binding domain of H-NS resulted in significantly reduced affinity for DNA yet conferred a wild-type fimA promoter inversion frequency, indicating that the mechanism of H-NS activity in modulating promoter inversion is independent of DNA binding. Furthermore, two specific H-NS amino acid substitutions resulted in hypermotile bacteria, while C-terminal H-NS truncations exhibited reduced motility. We also analyzed H-NS isoform composition expressed by various hns mutations and found that the N-terminal 67 amino acids were sufficient to support posttranslational modification and that substitutions at positions 18 and 26 resulted in the expression of a single H-NS isoform. These results are discussed in terms of H-NS domain organization and implications for biological activity.  相似文献   
22.
Bacterial multicomponent monooxygenases (BMMs) are a heterogeneous family of di-iron monooxygenases which share the very interesting ability to hydroxylate aliphatic and/or aromatic hydrocarbons. Each BMM possesses defined substrate specificity and regioselectivity which match the metabolic requirements of the strain from which it has been isolated. Pseudomonas sp. strain OX1, a strain able to metabolize o-, m-, and p-cresols, produces the BMM toluene/o-xylene monooxygenase (ToMO), which converts toluene to a mixture of o-, m-, and p-cresol isomers. In order to investigate the molecular determinants of ToMO regioselectivity, we prepared and characterized 15 single-mutant and 3 double-mutant forms of the ToMO active site pocket. Using the Monte Carlo approach, we prepared models of ToMO-substrate and ToMO-reaction intermediate complexes which allowed us to provide a molecular explanation for the regioselectivities of wild-type and mutant ToMO enzymes. Furthermore, using binding energy values calculated by energy analyses of the complexes and a simple mathematical model of the hydroxylation reaction, we were able to predict quantitatively the regioselectivities of the majority of the variant proteins with good accuracy. The results show not only that the fine-tuning of ToMO regioselectivity can be achieved through a careful alteration of the shape of the active site but also that the effects of the mutations on regioselectivity can be quantitatively predicted a priori.  相似文献   
23.
24.
25.
ABSTRACT

We investigated whether changes in the root system of pine seedlings induced by stress (lifting of bare-root seedlings from the nursery bed irrespective of dormancy; prolonged storage of bare-root seedlings in a cold room) could provide a measure of plant vigour. Physiological parameters, such as growth potential and root electrolyte leakage, and morphological parameters, such as root length and number of root tips, were calculated. Computerised image analysis was used to measure root growth, overall and based on root-diameter class (0–0.5 mm, 0.5–1.0 mm and 1.0–1.5 mm). The efficiency of vigour assessment was evaluated by correlating the data for each parameter with percentage seedling survival. Root growth potential was more efficient than root electrolyte leakage, but both parameters were affected by seedling age. Total root length was a more efficient indicator of plant vigour than root tip number, particularly when referred to roots of the same diameter class. A comparative analysis of physiological and morphological parameters referred to the root systems improves their relative effciency.  相似文献   
26.
ABSTRACT

To understand the mechanisms which enable the nucleus to function under low water potential, the morphology and biochemistry of potato cell nuclei were studied. Conformational modifications were observed in the chromatin of nuclei of cells growing under low water potential. These modifications include a higher number of heterochromatic centres, enlargement of the nuclear diameter, and a different accessibility of DNA to the action of restriction enzymes. Biochemical analyses showed that these chromatin modifications may coincide with quantitative and qualitative variations of several nuclear proteins, some of which may belong to the dehydrin family. We especially focussed our attention on a 45-kDa protein that is heat-stable and is recognised by an antibody raised against the conserved domain of dehydrins. The survival of potato cells in an environment where water availability is low may depend on several simultaneous events regarding the nucleus. The accumulation in the nucleus of specific proteins such as dehydrins could be required to stabilise the chromatin by means of their molecule-salvation action. Further studies are in progress to check whether or not variations in chromatin organisation may be one of the numerous traits that a cell must acquire to become water-stress resistant.  相似文献   
27.
28.
Abstract

The oxidation of purine derivatives using porphyrins as catalysts and dimethyldioxirane (DMDO) as oxygen atom donor is reported. The regioselectivity of the oxidation was found to be dependent on the presence of a free OH moiety on the N(9)-side chain of the substrate and on the structure of the catalyst.  相似文献   
29.
Abstract

Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5–2.5 mM), anti-inflammatory (0.5–5.0 mM) or antiplatelet (0.18–0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0–10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575±3319 vs. 1437±348 ng ml?1 min?1, mean±SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo model.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号