首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   16篇
生物科学   145篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1993年   4篇
  1992年   8篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
61.
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.  相似文献   
62.
Reduced insulin sensitivity is a key factor in the pathogenesis of type 2 diabetes and hypertension. Skeletal muscle insulin resistance is particularly important for its major role in insulin-mediated glucose disposal. Angiotensin II (ANG II) is integral in regulating blood pressure and plays a role in the pathogenesis of hypertension. In addition, we have documented that ANG II-induced skeletal muscle insulin resistance is associated with generation of reactive oxygen species (ROS). However, the linkage between ROS and insulin resistance in skeletal muscle remains unclear. To explore potential mechanisms, we employed the transgenic TG(mRen2)27 (Ren-2) hypertensive rat, which harbors the mouse renin transgene and exhibits elevated tissue ANG II levels, and skeletal muscle cell culture. Compared with Sprague-Dawley normotensive control rats, Ren-2 skeletal muscle exhibited significantly increased oxidative stress, NF-kappaB activation, and TNF-alpha expression, which were attenuated by in vivo treatment with an angiotensin type 1 receptor blocker (valsartan) or SOD/catalase mimetic (tempol). Moreover, ANG II treatment of L6 myotubes induced NF-kappaB activation and TNF-alpha production and decreased insulin-stimulated Akt activation and GLUT-4 glucose transporter translocation to plasma membranes. These effects were markedly diminished by treatment of myotubes with valsartan, the antioxidant N-acetylcysteine, NADPH oxidase-inhibiting peptide (gp91 ds-tat), or NF-kappaB inhibitor (MG-132). Similarly, NF-kappaB p65 small interfering RNA reduced NF-kappaB p65 subunit expression and nuclear translocation and TNF-alpha production but improved insulin-stimulated phosphorylation (Ser(473)) of Akt and translocation of GLUT-4. These findings suggest that NF-kappaB plays an important role in ANG II/ROS-induced skeletal muscle insulin resistance.  相似文献   
63.
Certain carbohydrates (rhamnose, 3-O-methyl rhamnose, and galactosamine) have been demonstrated to be present in Bacillus anthracis spores but absent in vegetative cells. Others have demonstrated that these spore-specific sugars are constituents of the glycoprotein BclA. In the current work, spore extracts were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A second collagen-like glycoprotein, BclB, was identified in B. anthracis. The protein moiety of this glycoprotein was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and the carbohydrate components by gas chromatography-mass spectrometry and tandem mass spectrometry. Spore-specific sugars were also demonstrated to be components of BclB.  相似文献   
64.
65.
Summary A plasma membrane fatty acid-binding protein (h-FABPPm) has been isolated from rat hepatocytes. Analogous proteins have also been identified in adipocytes, jejunal enterocytes and cardiac myocytes, all cells with high transmembrane fluxes of fatty acids. These 43 kDa, highly basic (pl = 9.1) FABPpm 's appear unrelated to the smaller, cytosolic FABP's (designated FABP's) identified previously in the same tissues. h-FABPpm appears closely related to the mitochondrial isoform of glutamic-oxaloacetic transaminase (mGOT), and both the purified protein and liver cell plasma membranes (LPM) possess GOT enzymatic activity. From their relative GOT specific activities it is estimated that h-FABPpm constitutes approximately 2% of LPM protein, or about 0.7 × 107 sites per cell. A monoclonal antibody-based competitive inhibition enzyme immunoassay (CIEIA) for h-FABPpm is described; it yields an estimate of 3.4 x 107 h-FABPpm sites per hepatocyte. Quantitated by either method, h-FABPPm appears to be a highly abundant protein constituent of LPM.  相似文献   
66.
We report the first observations of a linear growth pattern in aboral spine ossicles of adult Acanthaster planci (L.). This is unlike the spine development of other echinoderms. Growth in aboral spine ossicles of A. planci is essentially by addition of stereom at the base and the spine's growth history is preserved along its length. There are numerous growth lines perpendicular to the long axis of the ossicle. These are clearly evident in longitudinal spine sections and apparently caused by frequent growth episodes. There are periodic pigment bands which are parallel to the growth lines and evident on the surface of the ossicle. Basal growth of the spine ossicle and the nature of the growth lines were confirmed by tetracycline staining. Size/frequency analyses of a population of A. planci from Davies Reef (GBR) found spine ossicle growth, but not body diameter growth, over the six month period between sampling dates. The additional pigment banding in spine ossicles of 4 individuals recaptured after 6 months suggests that pigment bands are laid down seasonally. If pigment band cyclicity is validated, it offers a simple method for ageing adults of A. planci in field populations.  相似文献   
67.
Many viruses have overlapping genes and/or regions in which a nucleic acid signal is embedded in a coding sequence. To search for dual-use regions in the hepatitis C virus (HCV), we developed a facile computer-based sequence analysis method to map dual-use regions in coding sequences. Eight diverse full-length HCV RNA and polyprotein sequences were aligned and analyzed. A cluster of unusually conserved synonymous codons was found in the core-encoding region, indicating a potential overlapping open reading frame (ORF). Four peptides (A1, A2, A3, and A4) representing this alternate reading frame protein (ARFP), two others from the HCV core protein, and one from bovine serum albumin (BSA) were conjugated to BSA and used in western blots to test sera for specific antibodies from 100 chronic HCV patients, 44 healthy controls, and 60 patients with non-HCV liver disease. At a 1:20,000 dilution, specific IgGs to three of the four ARFP peptides were detected in chronic HCV sera. Reactivity to either the A1 or A3 peptides (both ARFP derived) was significantly associated with chronic HCV infection, when compared to non-HCV liver disease serum samples (10/100 versus 1/60; p < 0.025). Antibodies to A4 were not detected in any serum sample. Our western blot assays confirmed the presence of specific antibodies to a new HCV antigen encoded, at least in part, in an alternate reading frame (ARF) overlapping the core-encoding region. Because this novel HCV protein stimulates specific immune responses, it has potential value in diagnostic tests and as a component of vaccines. This protein is predicted to be highly basic and may play a role in HCV replication, pathogenesis, and carcinogenesis.  相似文献   
68.
The response of cells to signaling molecules such as hormones, growth factors, and immune mediators that bind to cell-surface receptors depends in part on the density and distribution of the relevant receptors. We have developed methods to map the distribution of IgE receptors on RBL-2H3 mast cells at high resolution in the scanning electron microscope (SEM). The key elements of our procedure are a new fixative that preserves receptor binding activity; a family of colloidal gold-conjugated probes that bind directly or indirectly to the IgE-receptor complex; an SEM with detectors for both secondary and backscattered electrons (to observe surface topography and gold particles, respectively); and an image processor that can average, digitize, and store these images. Topographical maps are generated by processing and superimposing the digitized images. The methods we describe can be applied to study the density and distribution of any membrane receptor that can be labeled with colloidal gold particles.  相似文献   
69.
RNA structures play key roles in the replication of RNA viruses. Sequence alignment software, thermodynamic RNA folding programs, and classical comparative phylogenetic analysis were used to build models of six RNA elements in the coding region of the hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B. The importance of five of these elements was evaluated by site-directed mutagenesis of a subgenomic HCV replicon. Mutations disrupting one of the predicted stem-loop structures, designated 5BSL3.2, blocked RNA replication, implicating it as an essential cis-acting replication element (CRE). 5BSL3.2 is about 50 bases in length and is part of a larger predicted cruciform structure (5BSL3). As confirmed by RNA structure probing, 5BSL3.2 consists of an 8-bp lower helix, a 6-bp upper helix, a 12-base terminal loop, and an 8-base internal loop. Mutational analysis and structure probing were used to explore the importance of these features. Primary sequences in the loops were shown to be important for HCV RNA replication, and the upper helix appears to serve as an essential scaffold that helps maintain the overall RNA structure. Unlike certain picornavirus CREs, whose function is position independent, 5BSL3.2 function appears to be context dependent. Understanding the role of 5BSL3.2 and determining how this new CRE functions in the context of previously identified elements at the 5' and 3' ends of the RNA genome should provide new insights into HCV RNA replication.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号