首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   38篇
生物科学   452篇
  2022年   2篇
  2021年   10篇
  2020年   4篇
  2019年   9篇
  2018年   10篇
  2017年   7篇
  2016年   17篇
  2015年   23篇
  2014年   31篇
  2013年   31篇
  2012年   39篇
  2011年   30篇
  2010年   14篇
  2009年   25篇
  2008年   24篇
  2007年   26篇
  2006年   30篇
  2005年   24篇
  2004年   20篇
  2003年   15篇
  2002年   10篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   6篇
  1996年   5篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有452条查询结果,搜索用时 31 毫秒
51.
Asymmetric osteoarthritis (OA) is a common type of OA in the ankle joint. OA also influences the muscles surrounding a joint, however, little is known about the muscle activation in asymmetric ankle OA. Therefore, the aim of this study was to characterize the patients’ muscle activation during isometric ankle torque measurements and level walking. Surface electromyography (EMG) was measured of gastrocnemius medialis (GM) and lateralis (GL), soleus (SO), tibialis anterior (TA), and peroneus longus (PL) in 12 healthy subjects and 12 ankle OA patients. To obtain time and frequency components of the EMG power a wavelet transformation was performed. Furthermore, entropy was introduced to characterize the homogeneity of the wavelet patterns.Patients produced lower plantar- and dorsiflexion torques and their TA wavelet spectrum was shifted towards lower frequencies. While walking, the patients’ muscles were active with a lower intensity and over a broader time–frequency region. In contrast to controls and varus OA patients, maximal GM activity of valgus OA patients lagged behind the activity of GL and SO. In both tasks, PL of the valgus patients contained more low frequency power. The results of this study will help to assess whether surgical interventions of ankle OA can reestablish the muscle activation patterns.  相似文献   
52.
Regulation of the number of ion channels at the plasma membrane is a critical component of the physiological response. We recently demonstrated that the Ca(2+)-activated K(+) channel, KCa2.3 is rapidly endocytosed and enters a Rab35- and EPI64C-dependent recycling compartment. Herein, we addressed the early endocytic steps of KCa2.3 using a combination of fluorescence and biotinylation techniques. We demonstrate that KCa2.3 is localized to caveolin-rich domains of the plasma membrane using fluorescence co-localization, transmission electron microscopy and co-immunoprecipitation (co-IP). Further, in cells lacking caveolin-1, we observed an accumulation of KCa2.3 at the plasma membrane as well as a decreased rate of endocytosis, as assessed by biotinylation. We also demonstrate that KCa2.3 and dynamin II are co-localized following endocytosis as well as demonstrating they are associated by co-IP. Further, expression of K44A dynamin II resulted in a 2-fold increase in plasma membrane KCa2.3 as well as a 3-fold inhibition of endocytosis. Finally, we evaluated the role of Rab5 in the endocytosis of KCa2.3. We demonstrate that expression of a dominant active Rab5 (Q79L) results in the accumulation of newly endocytosed KCa2.3 on to the membrane of the Rab5-induced vacuoles. We confirmed this co-localization by co-IP; demonstrating that KCa2.3 and Rab5 are associated. As expected, if Rab5 is required for the endocytosis of KCa2.3, expression of a dominant negative Rab5 (S34N) resulted in an approximate 2-fold accumulation of KCa2.3 at the plasma membrane. This was confirmed by siRNA-mediated knockdown of Rab5. Expression of the dominant negative Rab5 also resulted in a decreased rate of KCa2.3 endocytosis. These results demonstrate that KCa2.3 is localized to a caveolin-rich domain within the plasma membrane and is endocytosed in a dynamin- and Rab5-dependent manner prior to entering the Rab35/EPI64C recycling compartment and returning to the plasma membrane.  相似文献   
53.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   
54.
55.
56.
57.
58.
Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections.  相似文献   
59.
Due to post-translational modifications such as phosphorylation, proteins exist as distinct charge variants. Two-dimensional (2D) gel electrophoresis followed by immunoblotting enables the detection of these isoforms. For their accurate relative quantitation in different samples, a loading control is necessary to compensate for technical errors such as imprecise sample loading or transfer. The study reveals that the combinatory approach of SYPRO Ruby and chemiluminescence-based 2D Western blot analysis exhibits high linearity and excellent reproducibility and is applicable for limited sample amounts.  相似文献   
60.
In this study we investigated virus production in two marine phytoplankton species and how it relates to the host's cell cycle. Phaeocystis pouchetii (Hariot) Lagerheim and Pyramimonas orientalis McFadden, Hill & Wetherby, growing synchronously in batch cultures, were infected with their respective viruses (PpV and PoV) at four different stages in the cell cycle and the production of free virus was then measured for 30 h. The virus production in P. orientalis infected with PoV depended on the time of infection, whereas no such relation was found for P. pouchetii infected with PpV. The P. orientalis cultures infected at the end of the dark period and at the beginning of the light period produced three times more virus than those infected in the middle of the light period and eight times more virus than those infected at the beginning of the dark period. The latent periods for PpV and PoV were 12–14 h and 18–20 h, respectively, and in both cases were independent of the host cell cycle. The differences in virus production may be attributed to light or cell cycle dependent regulation of host infection, metabolism, or burst size. Regardless of the mechanism, these differences may be related to differences in the ecological strategies of the hosts and their ability to form blooms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号