首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   16篇
生物科学   350篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2017年   5篇
  2016年   8篇
  2015年   18篇
  2014年   24篇
  2013年   27篇
  2012年   24篇
  2011年   33篇
  2010年   14篇
  2009年   9篇
  2008年   16篇
  2007年   14篇
  2006年   13篇
  2005年   17篇
  2004年   17篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   10篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
  1956年   1篇
  1955年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
101.
Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this study indicates that HMBPP is an important elicitor in common for both Plasmodium and gut bacteria in the mosquito.  相似文献   
102.
The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function.  相似文献   
103.
β1-Integrin mediates cardiomyocyte growth and survival and its proper regulation is essential for the structural and functional integrity of the heart. β1-Integrin expression is enhanced in hypertrophy, but the mechanism and significance of its up-regulation are unknown. Because reactive oxygen species (ROS) are important mediators of myocardial remodeling we examined their role in regulated β1-integrin expression. Hypertrophy was induced in neonatal cardiomyocytes by endothelin-1 (ET-1), which activated the regulatory NADPH oxidase subunit Rac1, evoked ROS, and enhanced fetal gene expression and cardiomyocyte size. ET-1 also enhanced cell adhesion and FAK phosphorylation and inhibited oxidative stress-induced cardiomyocyte apoptosis. Further, ET-1 increased β1-integrin mRNA and protein expression via Rac1-ROS-dependent MEK/ERK and EGF receptor-PI3K/Akt activation as shown by adenoviral dominant-negative Rac1 or overexpression of copper/zinc-superoxide dismutase. The relevance of regulated β1-integrin expression was examined in cardiomyocytes, in which targeting siRNA impeded the ET-1-induced β1-integrin up-regulation. In these cells, ET-1-induced cell adhesion, FAK phosphorylation, and hypertrophic response were significantly blunted, whereas its antiapoptotic effect was predominantly unchanged, suggesting at least partial dissociation of prohypertrophic and prosurvival signaling elicited by ET-1. In conclusion, β1-integrin up-regulation in response to ET-1 is mediated via Rac1-ROS-dependent activation of prohypertrophic pathways and is mandatory for ET-1-induced FAK activation, cell adhesion, and hypertrophic response.  相似文献   
104.
Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific “omics” data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level.  相似文献   
105.
The aerial parts of the medicinal plant Biophytum petersianum have a long tradition for being used in Mali and other West-African countries against various ailments such as wound healing and malaria. Previous studies on polysaccharides from water extracts of the aerial parts showed the presence of pectic like polymers with an effect on the human complement system as well as the ability to activate macrophages and dendritic cells.The present study shows that pectic polysaccharide fragments (BPII.1 and BPII.2) as well as the original pectic polysaccharide (BPII) expressed immunomodulating activity against Peyer’s patch immunocompetent cells. Exo-β-d-(1 → 3)-galactanase digestion succeeded to decrease IL-6 production enhancing activity against Peyer’s patch cells of BPII.2, but the activity of BPII.1 did not decrease. Endo-β-d-(1 → 4)-galactanase digestion reduced the activities of both BPII.1 and BPII.2. BPII.1 and BPII.2 also stimulated IL-6 production enhancing activity against macrophages, and the activities of both pectic fragments were significantly decreased by either enzymic digestion with exo-β-d-(1 → 3)-galactanase or endo-β-d-(1 → 4)-galactanase. Trimming of terminal GlcA by exo-β-d-glucuronidase digestion did not affect IL-6 production enhancing activity against macrophages of both pectic fragments. Methylation analyses of endo-β-d-(1 → 4)-galactanase digestion products showed the characteristic decrement of 4-linked Gal residues in the pectic fragments. These results suggest that β-d-(1 → 4)-galactan-containing side chains in BPII.1 and BPII.2 play an important role for expression of immunomodulating activity against both Peyer’s patch immunocompetent cells and macrophages in addition to β-d-(1 → 3,6)-galactan chains.  相似文献   
106.
An immunomodulating pectic polymer, GOA1, obtained from the aerial parts of the Malian medicinal plant Glinus oppositifolius (L.) Aug. DC. (Aizoaceae) has previously been reported to consist of arabinogalactans type I and II, probably linked to a rhamnogalacturonan backbone. To further elucidate the structure of the polymer GOA1, enzymatic degradation studies and weak acid hydrolysis were performed. Five different glycosidases were used, endo-alpha-D-(1-->4)-polygalacturonase, exo-alpha-L-arabinofuranosidase, endo-alpha-L-(1-->5)-arabinanase, endo-beta-D-(1-->4)-galactanase and exo-beta-D-galactosidase. It appears that GOA1 may contain a structural moiety consisting of a 1,3-linked galactopyranosyl (Galp) main chain with 1,6-linked Galp side chains attached to position 6 of the main chain. The 1,6-linked Galp side chain may be branched in position 3 with arabinofuranosyl (Araf) side chains. A 1,4-linked Galp backbone which might carry side chains or glycosyl units attached to position 3 is also a structural element in the polymer. We further show that GOA1 induce proliferation of B cells and the secretion of IL-1beta by macrophages, in addition to a marked increase of mRNA for IFN-gamma in NK-cells. To elucidate structure-activity relations the native polymer and the digested fractions were tested for complement fixing activity and intestinal immune stimulating activity. The partial removal of Araf residues after enzymatic degradations did not affect the bioactivities, while the acid hydrolysed fraction showed reduced complement fixing activity. A decrease in Araf units, 1,3,6-linked Galp units and a partial hydrolysed rhamnogalacturonan backbone, in addition to a reduction in molecular weight are factors that might have contributed to reduced bioactivity.  相似文献   
107.
Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.  相似文献   
108.
109.
Few methods for noninvasive assessment of arterial stiffness and endothelial dysfunction in porcine models are available. The aim of this study was to evaluate methods for assessment of arterial stiffness and endothelial dysfunction in anesthetized Göttingen minipigs. Pulse-wave velocity (PWV) was assessed in male Göttingen minipigs (n = 8; age approximately 60 wk) by using applanation tonometry of the carotid and femoral arteries. In addition, flow-mediated vasodilation (FMD) was assessed by using vascular ultrasonography of the brachial artery to evaluate endothelial dysfunction. To evaluate the reproducibility of the methods, minipigs were anesthetized by intravenous infusion of ketamine and midazolam and examined every other day for a total of 3 trials. Neither examination day nor systolic, diastolic, or mean arterial blood pressure statistically influenced PWV or FMD. The median interexamination coefficient of variation was 17% for PWV and 59% for FMD. Measured values of PWV corresponded largely to those in clinically healthy humans, but FMD values were lower than expected for lean, young animals. Although the ketamine–midazolam anesthesia we used has been associated with minor hemodynamic effects in vivo, in vitro studies suggest that both drugs are vasodilatory. Therefore anesthesia might have influenced the endothelial response, contributing to the modest FMD response and the concurrent high coefficients of variation that we noted. We conclude that PWV—but not FMD—showed acceptable interexamination variation for its potential application in porcine models.Abbreviations: FMD, flow-mediated vasodilation; FVI, integrated flow velocity; GTN, glyceryl trinitrate; PWV, pulse-wave velocity; T, transit timeCardiovascular disease has become a global challenge in public health,42 and the development and characterization of comparative animal models are of increasing importance. Several animal models of atherosclerosis, including porcine, have been described.11,12,34 Due to similarities to humans in the anatomy of the cardiovascular system and metabolic physiology, pigs represent a generally useful model in regard to preclinical evaluation and pharmacology.36 Assessment of changes related to atherosclerosis in vivo would be valuable in for example longitudinal assessment of drug effect, but few noninvasive methods for evaluating structural and functional changes in the arteries of pigs are available. In humans, increased arterial stiffness, which occurs with advanced age, also is caused by the pathophysiologic changes associated with atherosclerosis,26 and noninvasive methods for assessing arterial stiffness have been established. The evaluation of pulse-wave velocity (PWV) by using pressure transducers, such as applanation tonometry, is a method recognized as an independent predictor for cardiovascular events in epidemiologic studies.21 The method evaluates the velocity with which the pulse wave is propagated through the arterial tree, with arterial stiffness causing increased velocity.1,22,29,37,39 Flow-mediated vasodilation (FMD), assessed by vascular ultrasonography, represents a noninvasive evaluation of endothelial-dependent vasodilation. A decrease in vasodilation as a response to increased shear stress has been recognized as a marker of endothelial dysfunction, which precedes the development of atherosclerosis.5,7 Recent studies have shown that the FMD method is applicable in large animals (that is, dogs and horses) and that a decreased FMD response occurs in dogs with valvular heart disease.10,15,23,28The aim of this study was to evaluate the reproducibility of methods for assessing arterial stiffness (PWV) and endothelial function (FMD response) in anesthetized Göttingen minipigs, including the influences of arterial blood pressure, heart rate, and room and body temperatures on these methods.  相似文献   
110.

Background

Genetic predisposition to adiposity may interact with dietary protein in relation to changes of anthropometry.

Objective

To investigate the interaction between genetic predisposition to higher body mass index (BMI), waist circumference (WC) or waist-hip ratio adjusted for BMI (WHRBMI) and dietary protein in relation to subsequent change in body weight (ΔBW) or change in WC (ΔWC).

Design

Three different Danish cohorts were used. In total 7,054 individuals constituted the study population with information on diet, 50 single-nucleotide polymorphisms (SNPs) associated with BMI, WC or WHRBMI, as well as potential confounders. Mean follow-up time was ∼5 years. Four genetic predisposition-scores were based on the SNPs; a complete-score including all selected adiposity- associated SNPs, and three scores including BMI, WC or WHRBMI associated polymorphisms, respectively. The association between protein intake and ΔBW or ΔWC were examined and interactions between SNP-score and protein were investigated. Analyses were based on linear regressions using macronutrient substitution models and meta-analyses.

Results

When protein replaced carbohydrate, meta-analyses showed no associations with ΔBW (41.0 gram/y/5 energy% protein, [95% CI: −32.3; 114.3]) or ΔWC (<−0.1 mm/y/5 energy % protein, [−1.1; 1.1]). Similarly, there were no interactions for any SNP-scores and protein for either ΔBW (complete SNP-score: 1.8 gram/y/5 energy% protein/risk allele, [−7.0; 10.6]) or ΔWC (complete SNP-score: <0.1 mm/y/5 energy% protein/risk allele, [−0.1; 0.1]). Similar results were seen when protein replaced fat.

Conclusion

This study indicates that the genetic predisposition to general and abdominal adiposity, assessed by gene-scores, does not seem to modulate the influence of dietary protein on ΔBW or ΔWC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号