首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   1篇
自然科学   77篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   12篇
  2011年   14篇
  2010年   5篇
  2008年   4篇
  2007年   2篇
  2005年   3篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  1994年   1篇
  1972年   1篇
  1969年   3篇
  1968年   1篇
  1965年   1篇
排序方式: 共有77条查询结果,搜索用时 62 毫秒
21.
22.
Cheung VG  Spielman RS  Ewens KG  Weber TM  Morley M  Burdick JT 《Nature》2005,437(7063):1365-1369
To study the genetic basis of natural variation in gene expression, we previously carried out genome-wide linkage analysis and mapped the determinants of approximately 1,000 expression phenotypes. In the present study, we carried out association analysis with dense sets of single-nucleotide polymorphism (SNP) markers from the International HapMap Project. For 374 phenotypes, the association study was performed with markers only from regions with strong linkage evidence; these regions all mapped close to the expressed gene. For a subset of 27 phenotypes, analysis of genome-wide association was performed with >770,000 markers. The association analysis with markers under the linkage peaks confirmed the linkage results and narrowed the candidate regulatory regions for many phenotypes with strong linkage evidence. The genome-wide association analysis yielded highly significant results that point to the same locations as the genome scans for about 50% of the phenotypes. For one candidate determinant, we carried out functional analyses and confirmed the variation in cis-acting regulatory activity. Our findings suggest that association studies with dense SNP maps will identify susceptibility loci or other determinants for some complex traits or diseases.  相似文献   
23.
Despite the sequencing of the human and mouse genomes, few genetic mechanisms for protecting against autoimmune disease are currently known. Here we systematically screen the mouse genome for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self. The sanroque mutation acts within mature T cells to cause formation of excessive numbers of follicular helper T cells and germinal centres. The mutation disrupts a repressor of ICOS, an essential co-stimulatory receptor for follicular T cells, and results in excessive production of the cytokine interleukin-21. sanroque mice fail to repress diabetes-causing T cells, and develop high titres of autoantibodies and a pattern of pathology consistent with lupus. The causative mutation is in a gene of previously unknown function, roquin (Rc3h1), which encodes a highly conserved member of the RING-type ubiquitin ligase protein family. The Roquin protein is distinguished by the presence of a CCCH zinc-finger found in RNA-binding proteins, and localization to cytosolic RNA granules implicated in regulating messenger RNA translation and stability.  相似文献   
24.
Résumé La forme de la coquille de l'uf, chez la poule, a une influence réelle sur l'orientation de l'embryon. Si la coquille est très allongée, le plan de symétrie de l'embryon est perpendiculaire à l'axe long de la coquille et l'orientation de l'embryon conforme à la règle devon Baer. Au contraire, si la coquille est arrondie, l'orientation de l'embryon est quelconque et, souvent, non conforme à la règle devon Baer.  相似文献   
25.
26.
Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.  相似文献   
27.
Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of ageing. Here we address this question by taking advantage of the highly specific role of DNA ligase IV in the repair of DNA double-strand breaks by non-homologous end-joining, and by the discovery of a unique mouse strain with a hypomorphic Lig4(Y288C) mutation. The Lig4(Y288C) mouse, identified by means of a mutagenesis screening programme, is a mouse model for human LIG4 syndrome, showing immunodeficiency and growth retardation. Diminished DNA double-strand break repair in the Lig4(Y288C) strain causes a progressive loss of haematopoietic stem cells and bone marrow cellularity during ageing, and severely impairs stem cell function in tissue culture and transplantation. The sensitivity of haematopoietic stem cells to non-homologous end-joining deficiency is therefore a key determinant of their ability to maintain themselves against physiological stress over time and to withstand culture and transplantation.  相似文献   
28.
Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~ 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10??), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.  相似文献   
29.
30.
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号