首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   63篇
工业技术   770篇
  2024年   2篇
  2023年   7篇
  2022年   31篇
  2021年   78篇
  2020年   30篇
  2019年   25篇
  2018年   36篇
  2017年   28篇
  2016年   33篇
  2015年   26篇
  2014年   38篇
  2013年   54篇
  2012年   53篇
  2011年   63篇
  2010年   37篇
  2009年   41篇
  2008年   46篇
  2007年   36篇
  2006年   28篇
  2005年   11篇
  2004年   9篇
  2003年   15篇
  2002年   11篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有770条查询结果,搜索用时 31 毫秒
91.
N‐type doping of GaAs nanowires has proven to be difficult because the amphoteric character of silicon impurities is enhanced by the nanowire growth mechanism and growth conditions. The controllable growth of n‐type GaAs nanowires with carrier density as high as 1020 electron cm?3 by self‐assisted molecular beam epitaxy using Te donors is demonstrated here. Carrier density and electron mobility of highly doped nanowires are extracted through a combination of transport measurement and Kelvin probe force microscopy analysis in single‐wire field‐effect devices. Low‐temperature photoluminescence is used to characterize the Te‐doped nanowires over several orders of magnitude of the impurity concentration. The combined use of those techniques allows the precise definition of the growth conditions required for effective Te incorporation.  相似文献   
92.
CK2 is a highly pleiotropic Ser/Thr protein kinase that is able to promote cell survival and enhance the tumour phenotype under specific circumstances. We have determined the crystal structure of three new complexes with tetrabromobenzimidazole derivatives that display K(i) values between 0.15 and 0.30 microM. A comparative analysis of these data with those of four other inhibitors of the same family revealed the presence of some highly conserved water molecules in the ATP-binding site. These waters reside near Lys68, in an area with a positive electrostatic potential that is able to attract and orient negatively charged ligands. The presence of this positive region and two unique bulky residues that are typical of CK2, Ile66 and Ile174, play a critical role in determining the ligand orientation and binding selectivity.  相似文献   
93.
Three Italian olive varieties (Caroleo, Leccino and Dritta) were processed by centrifugation in the oil mill. The olive paste was kneaded at 20, 25, 30 and 35 °C. The results achieved revealed that the oil content in green volatiles from lipoxygenase pathway (including C5 and C6 compounds and especially unsaturated C6 aldehydes) decreased progressively as the kneading temperature increased, dropping markedly at 35 °C. The content of phenols, o‐diphenols and secoiridoids showed an opposite trend, but the temperature of 35 °C was critical also for them, as it was for the majority of the other components, analytical parameters and indices related to quality, typicality and genuineness. In general, an increasing kneading temperatures increased the release of oil constituents from the vegetable tissue. This factor also affected the oil extraction yields. The best overall results were achieved by malaxing the olive paste at 30 °C. In fact, this temperature level led to achieving both pleasant green virgin olive oils and satisfactory oil extraction outputs.  相似文献   
94.
Hypoxia is the leading cause of death in cardiomyocytes. Cells respond to oxygen deprivation by activating cytoprotective programs, such as mitochondrial connexin43 (mCx43) overexpression and the opening of mitochondrial KATP channels, aimed to reduce mitochondrial dysfunction. In this study we used an in vitro model of CoCl2-induced hypoxia to demonstrate that mCx43 and KATP channels cooperate to induce cytoprotection. CoCl2 administration induces apoptosis in H9c2 cells by increasing mitochondrial ROS production, intracellular and mitochondrial calcium overload and by inducing mitochondrial membrane depolarization. Diazoxide, an opener of KATP channels, reduces all these deleterious effects of CoCl2 only in the presence of mCx43. In fact, our results demonstrate that in the presence of radicicol, an inhibitor of Cx43 translocation to mitochondria, the cytoprotective effects of diazoxide disappear. In conclusion, these data confirm that there exists a close functional link between mCx43 and KATP channels.  相似文献   
95.
Notch signaling has been identified as a critical regulator of cartilage development and homeostasis. Its pivotal role was established by both several joint specific Notch signaling loss of function mouse models and transient or sustained overexpression. NOTCH1 is the most abundantly expressed NOTCH receptors in normal cartilage and its expression increases in osteoarthritis (OA), when chondrocytes exit from their healthy “maturation arrested state” and resume their natural route of proliferation, hypertrophy, and terminal differentiation. The latter are hallmarks of OA that are easily evaluated in vitro in 2-D or 3-D culture models. The aim of our study was to investigate the effect of NOTCH1 knockdown on proliferation (cell count and Picogreen mediated DNA quantification), cell cycle (flow cytometry), hypertrophy (gene and protein expression of key markers such as RUNX2 and MMP-13), and terminal differentiation (viability measured in 3-D cultures by luminescence assay) of human OA chondrocytes. NOTCH1 silencing of OA chondrocytes yielded a healthier phenotype in both 2-D (reduced proliferation) and 3-D with evidence of decreased hypertrophy (reduced expression of RUNX2 and MMP-13) and terminal differentiation (increased viability). This demonstrates that NOTCH1 is a convenient therapeutic target to attenuate OA progression.  相似文献   
96.
A detailed stratigraphic investigation of the intercalation mechanism when graphite electrodes are immersed inside diluted perchloric(HClO4)and sulfuric(H2SO4)electrolytes is obtained by comparing results when graphite crystals are simply immersed in the same acid solutions.By combining time-of-flight secondary ion mass spectrometry(ToF-SIMS)and in-situ atomic force microscopy(AFM),we provide a picture of the chemical species involved in the intercalation reaction.The depth intensity profile of the ion signals along the electrode crystal clearly shows a more complex mechanism for the intercalation process,where the local morphology of the basal plane plays a crucial role.Solvated anions are mostly located within the first tens of nanometers of graphite,but electrolytes also diffuse inside the buried layers for hundreds of nanometers,the latter process is also aided by the presence of mesoscopic crystal defects.Residual material from the electrolyte solution was found localized in well-defined circular spots,which represent preferential interaction areas.Interestingly,blister-like micro-structures similar to those observed on the highly oriented pyrolytic graphite(HOPG)surface were found in the buried layers,confirming the equivalence of the chemical condition on the graphite surface and in the underneath layers.  相似文献   
97.
Tumor-associated macrophages play a key role in promoting tumor progression by exerting an immunosuppressive phenotype associated with the expression of programmed cell death ligand 1 (PD-L1). It is well known that tumor-derived small extracellular vesicles (SEVs) affect the tumor microenvironment, influencing TAM behavior. The present study aimed to examine the effect of SEVs derived from colon cancer and multiple myeloma cells on macrophage functions. Non-polarized macrophages (M0) differentiated from THP-1 cells were co-cultured with SEVs derived from a colorectal cancer (CRC) cell line, SW480, and a multiple myeloma (MM) cell line, MM1.S. The expression of PD-L1, interleukin-6 (IL-6), and other inflammatory cytokines as well as of the underlying molecular mechanisms were evaluated. Our results indicate that SEVs can significantly upregulate the expressions of PD-L1 and IL-6 at both the mRNA and protein levels and can activate the STAT3 signaling pathway. Furthermore, we identified the TLR4/NF-kB pathway as a convergent mechanism for SEV-mediated PD-L1 expression. Overall, these preliminary data suggest that SEVs contribute to the formation of an immunosuppressive microenvironment.  相似文献   
98.
Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.  相似文献   
99.
Polybetaines, that have moieties bearing both cationic (quaternary ammonium group) and anionic groups (carboxylate, sulfonate, phosphate/phosphinate/phosphonate groups) situated in the same structural unit represent an important class of smart polymers with unique and specific properties, belonging to the family of zwitterionic materials. According to the anionic groups, polybetaines can be divided into three major classes: poly(carboxybetaines), poly(sulfobetaines) and poly(phosphobetaines). The structural diversity of polybetaines and their special properties such as, antifouling, antimicrobial, strong hydration properties and good biocompatibility lead to their use in nanotechnology, biological and medical fields, water remediation, hydrometallurgy and the oil industry. In this review we aimed to highlight the recent developments achieved in the field of biomedical applications of polybetaines such as: antifouling, antimicrobial and implant coatings, wound healing and drug delivery systems.  相似文献   
100.
Skeletal muscle is essential to maintain vital functions such as movement, breathing, and thermogenesis, and it is now recognized as an endocrine organ. Muscles release factors named myokines, which can regulate several physiological processes. Moreover, skeletal muscle is particularly important in maintaining body homeostasis, since it is responsible for more than 75% of all insulin-mediated glucose disposal. Alterations of skeletal muscle differentiation and function, with subsequent dysfunctional expression and secretion of myokines, play a key role in the pathogenesis of obesity, type 2 diabetes, and other metabolic diseases, finally leading to cardiometabolic complications. Hence, a deeper understanding of the molecular mechanisms regulating skeletal muscle function related to energy metabolism is critical for novel strategies to treat and prevent insulin resistance and its cardiometabolic complications. This review will be focused on both cellular and animal models currently available for exploring skeletal muscle metabolism and endocrine function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号