首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1227篇
  免费   38篇
  国内免费   4篇
工业技术   1269篇
  2023年   5篇
  2022年   10篇
  2021年   39篇
  2020年   16篇
  2019年   22篇
  2018年   25篇
  2017年   17篇
  2016年   41篇
  2015年   29篇
  2014年   44篇
  2013年   69篇
  2012年   61篇
  2011年   89篇
  2010年   56篇
  2009年   65篇
  2008年   68篇
  2007年   73篇
  2006年   52篇
  2005年   42篇
  2004年   36篇
  2003年   27篇
  2002年   45篇
  2001年   17篇
  2000年   18篇
  1999年   17篇
  1998年   51篇
  1997年   20篇
  1996年   21篇
  1995年   14篇
  1994年   21篇
  1993年   19篇
  1992年   16篇
  1991年   8篇
  1990年   9篇
  1989年   9篇
  1988年   3篇
  1987年   11篇
  1986年   13篇
  1985年   8篇
  1984年   10篇
  1983年   13篇
  1982年   6篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1269条查询结果,搜索用时 31 毫秒
991.
Incomplete excision of pleomorphic adenoma (PA) may result in recurrent pleomorphic adenoma (RPA). Furthermore, long-term neglected PA may become carcinoma ex pleomorphic adenoma (CXPA). In the present study, the relationships between mast cell-derived chymase and these tumors were examined. The tumor tissues of PA consisted of either or both glandular and fibrotic structures. Histological features of RPA were almost similar to those of PA, except that they showed multinodular structures. CXPA is composed of a mixture of PA and carcinoma. The main stromal cells in PA were myofibroblasts, whereas fibroblasts constituted the main cellular portion in the stromal tissue of RPA. Cancer-associated fibroblasts (CAFs) were present abundantly in CXPA. With increased VEGF expression, neovascularization tended to increase in RPA or CXPA. Compared with PA, chymase-positive mast cells, as well as chymase gene expression, were increased in the tumor tissues from patients with RPA or CXPA. SCF, TGFβ1, and PCNA-positive staining was widely observed in these tumor tissues. The above results suggest that mast cell-derived chymase through its direct or cooperative effects with other mediators may participate in the pathophysiology of RPA and CXPA.  相似文献   
992.
A thermochemical water splitting hydrogen production system based on the iodine sulphur (IS) process is presently under development in JAEA. The hydrogen production system is to be connected to the HTTR operating test reactor in JAEA. An important development goal for the HTTR-IS system is design and construction of the IS process to the standards of a conventional chemical industrial plant in order to simplify the cost and operation of the overall nuclear hydrogen production.  相似文献   
993.
994.
The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.  相似文献   
995.
The presented paper focuses on a numerical analysis of a heat and mass transfer process in a novel type of methane/steam reforming reactor. The novelty of the macro-patterned reactor design lies in dividing a reformer into segments of various lengths and reactivity. Precisely, splitting the catalyst and filling the created empty volume with porous, non-reactive, thermal conducting material such as metallic foam. This approach allows for moderating a sharp temperature drop at the inlet of the reactor typical for the endothermic methane/steam reforming process. To analyze the considered system, the mathematical and numerical models of transport phenomena and the reaction kinetics were developed and implemented into an in-house solver. The kinetics of methane/steam reforming was taken from the literature. The outlet composition obtained from the kinetic model was compared with the experimental measurements and good agreement was found. The conducted numerical analysis includes cases that differ from a number and lengths of catalytic and non-catalytic segments. The obtained results indicate that the macro-patterned design is a promising strategy that allows for a significant improvement of temperature distribution in a reforming reactor. It was shown that the proposed approach could help to cut the cost of the catalyst material by allowing for the conversion of methane with a smaller amount of the catalyst close to the reference case.  相似文献   
996.
The presented research focuses on an optimization design of a catalyst distribution inside a small-scale methane/steam reforming reactor. A genetic algorithm was used for the multiobjective optimization, which included the search for an optimum of methane conversion rate and a minimum of the difference between highest and lowest temperatures in the reactor. For the sake of computational time, the maximal number of the segment with different catalyst densities was set to be thirty in this study. During the entire optimization process, every part of the reactor could be filled, either with a catalyst material or non-catalytic metallic foam. In both cases, the porosity and pore size was also specified. The impact of the porosity and pore size on the active reaction surface and permeability was incorporated using graph theory and three-dimensional digital material representation. Calculations start with the generation of a random set of possible reactors, each with a different catalyst distribution. The algorithm calls reforming simulation over each of the reactors, and after obtaining concentration and temperature fields, the algorithms calculated fitness function. The properties of the best reactors are combined to generate a new population of solutions. The procedure is repeated, and after meeting the coverage criteria, the optimal catalyst distribution was proposed. The paper is summarized with the optimal catalyst distribution for the given size and working conditions of the system.  相似文献   
997.

We developed a respiratory monitoring system to evaluate elasticity on the lungs of small animals by the positive-pressure airflow under artificial ventilation during experiments. The system consists of a tube-type thermal flow sensor fabricated using microelectromechanical systems (MEMS) technology and commercially available Si-MEMS pressure sensors. We first used a small spherical balloon having an inner volume of 0.68 cc as a simulated lung. We evaluated the balloon elasticity from the supplied flow volume and pressure inside the balloon and confirmed that our system can detect balloon elasticity from the gradient under both static and cyclic airflow. We evaluated our system in terms of the lung elasticity of a rat and obtained a flow volume vs. pressure curve showing the lung elasticity under artificial ventilation. The changes in the flow rate and pressure waveforms due to airway contraction with drug administration were detected with our system in real time.

  相似文献   
998.
A thermochemical water-splitting iodine–sulfur process offers the potential for mass-producing hydrogen at high-efficiency levels, and it uses high-temperature heat sources, including high-temperature gas-cooled reactors, solar heat, and waste heat of industries. The raw material (H2O) is split into H2 and O2 by combining three chemical reactions using sulfur and iodine. Currently, R&D tasks are essential to confirm the integrity of the components that are made of practical structural materials and the stability of hydrogen production in harsh working conditions. A test facility for producing hydrogen was constructed from corrosion-resistant components that are developed using industrial materials. In addition, for stable hydrogen production, technical issues for instrumental improvements (i.e., stable pumping of the hydrogen iodide (HI)–I2–H2O solution without locking the shaft seal, prevention of leakage by improving the quality control of glass-lined steel, prevention of I2 precipitation using a water removal technique in a Bunsen reactor) were solved. The entire process was successfully operated for 150 h at the rate of ca. 30 L/h. The integrity of components made of practical structural materials and the operational stability of the hydrogen production facility in harsh working conditions were demonstrated.  相似文献   
999.
This paper proposes a torque control method for interior permanent magnet synchronous motors (IPMSMs). The proposed method uses state feedback control based on a new n‐t coordinate system and controls the voltage amplitude and phase based on the coordinate system. The t‐axis is a tangent line of the constant voltage ellipse, and the n‐axis is a normal line of the ellipse. The n‐axis current is utilized to place the poles of the transfer function at the desired position and reduce the mutual coupling between the voltage amplitude controller and phase controller. The proposed method realizes a high torque response even under parameter variation for the linear range and over‐modulation range of the inverter, including a 6‐step mode. The effectiveness of the proposed method was verified by simulation and experimental results.  相似文献   
1000.
Some types of oxide gels derived from solutions exhibit a thermal plasticity property. In our previous report, the thermal plasticity property was utilized to produce oxide patterns and thin film transistors. However, it was not clear why some oxide gels exhibited a thermal plasticity property. In this report, we prepared not only a plastic ZrO2 gel but also a non-plastic ZrO2 gel, and investigated the structural and thermal properties of these gels to clarify why some gels exhibit a thermal plasticity property. We identified a clustered structure in ZrO2 gels, with a Zr-O-Zr core coordinated by organic ligands. This structure was strongly related to the thermal plasticity property. The thermal plasticity property of ZrO2 gel resulted from desorption and oxidization of the extra ligands by heating. We determined that the plastically deformed gels were consisted of clusters, and that the behaviour of ligands was a trigger in making a gel plastically deformed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号