首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   11篇
  国内免费   2篇
工业技术   410篇
  2024年   3篇
  2023年   6篇
  2022年   8篇
  2021年   16篇
  2020年   10篇
  2019年   17篇
  2018年   18篇
  2017年   11篇
  2016年   18篇
  2015年   8篇
  2014年   18篇
  2013年   23篇
  2012年   23篇
  2011年   25篇
  2010年   15篇
  2009年   23篇
  2008年   22篇
  2007年   21篇
  2006年   12篇
  2005年   4篇
  2004年   15篇
  2003年   11篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   7篇
  1995年   1篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   10篇
  1985年   4篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
排序方式: 共有410条查询结果,搜索用时 0 毫秒
101.
The International Atomic Energy Agency (IAEA) has initiated an International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) in the year 2000. The main objective of INPRO is to help the world community to ensure that clean and safe nuclear energy is available to contribute in fulfilling the energy needs in the 21st century in a sustainable manner. This paper demonstrates a methodology as an application of INPRO assessment for constructing nuclear power development scenarios by the use of IAEA energy optimisation models MESSAGE and DESAE. The scenario for the overall growth of energy and electricity in India is considered as a case study since for several decades India is vigorously pursuing nuclear power development program to meet its growing energy needs. It is evident from this study that in order to develop a realistic nuclear power scenario, it is necessary to generate an overall energy and electricity scenario at first. Within the overall energy-electricity picture it can be envisaged how the nuclear power technology would contribute to supply the future energy needs.  相似文献   
102.
Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.  相似文献   
103.
Mesoporous MnO2 samples with average pore-size in the range of 2–20 nm are synthesized in sonochemical method from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO2 samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO2 from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m2 g−1 is achieved for MnO2 sample. The MnO2 samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge–discharge cycling in 0.1 M aqueous Ca(NO3)2 electrolyte. A maximum specific capacitance (SC) of 265 F g−1 is obtained for the MnO2 sample synthesized in sonochemical method using an amplitude of 30 μm. The MnO2 samples also possess good electrochemical stability due to their favourable porous structure and high surface area.  相似文献   
104.
The present work aimed at the standardization of transesterification process parameters for the production of methyl ester of filtered neem oil and fuel characterization for engine performance. The effect of process parameters such as molar ratio, preheating temperature, catalyst concentration and reaction time was studied to standardize the transesterification process for estimating the highest recovery of ester with lowest possible viscosity. Based on the observations of the ester recovery and kinematic viscosity, it was found that filtered neem oil at 6:1 M ratio (methanol to oil) preheated at 55 °C temperature and maintaining 60 °C reaction temperature for 60 min in the presence of 2 percent KOH and then allowed to settle for 24 h in order to get lowest kinematic viscosity (2.7 cSt) with ester recovery (83.36%). Different fuel properties of the neem methyl ester and neem oil were also measured. Results show that the methyl ester of neem obtained under the optimum condition is an excellent substitute for fossil fuels.  相似文献   
105.
The impact of programming biases, device scaling and variation of technological parameters on channel initiated secondary electron (CHISEL) programming performance of scaled NOR Flash electrically erasable programmable read-only memories (EEPROMs) is studied in detail. It is shown that CHISEL operation offers faster programming for all bias conditions and remains highly efficient at lower biases compared to conventional channel hot electron (CHE) operation. The physical mechanism responsible for this behavior is explained using full band Monte Carlo simulations. CHISEL programming efficiency is shown to degrade with device scaling, and various technological parameter optimization schemes required for its improvement are explored. The resulting increase in drain disturbs is also studied and the impact of technological parameter optimization on the programming performance versus drain disturb tradeoff is analyzed. It is shown that by judicious choice of technological parameters the advantage of CHISEL programming can be maintained for deeply scaled electrically erasable programmable read-only memory (EEPROM) cells.  相似文献   
106.
The alcoholysis process requires high activity catalysts for biodiesel production. Heterogeneous catalysts have been proven to possess highly active nature and are environment-friendly. The present article emphasizes on various types of solid base catalysts that have been used in the recent past for the production of biodiesel by transesterification of oils. The parameters and conditions affecting the transesterification reaction and biodiesel yield have also been mentioned in the article. Heterogeneous catalysts have the capability to be recycled for many runs in the process without greatly abating the biodiesel yield. Also, such catalysts possess noncorrosive nature, thus making the biodiesel safe to be used in engine without any damage. The exploitation of waste materials as catalysts would reduce the overall production cost of biodiesel. Calcium-based catalysts in the reviewed literature have shown promising outcomes for the future use and would make the process economical for large-scale industrial applications.  相似文献   
107.
In the present work, the optimum biodiesel conversion from waste cooking oil to biodiesel through transesterification method was investigated. The base catalyzed transesterification under different reactant proportions such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of biodiesel. The optimum condition for base catalyzed transesterification of waste cooking oil was determined to be 12:1 and 5 wt% of zinc doped calcium oxide. The fuel properties of the produced biodiesel such as the calorific value, flash point and density were examined and compared to conventional diesel. The properties of produced biodiesel and their blend for different ratios (B20, B40, B60, B80 and B100) were comparable with properties of diesel oil and ASTM biodiesel standards. Tests have been conducted on CI engine which runs at a constant speed of 1500 rpm, injection pressure of 200 bar, compression ratio 15:1 and 17.5, and varying engine load. The performance parameters include brake thermal efficiency, brake specific energy consumption and emissions parameters such as Carbon monoxide (CO), Hydrocarbon (HC), Oxides of Nitrogen (NOx) and smoke opacity varying with engine load (BP). Diesel engine's thermal performance and emission parameters such as CO, HC, and NOx on different biodiesel blends demonstrate that biodiesel produced from waste cooking oil using heterogeneous catalyst was suitable to be used as diesel oil blends and had lesser emissions as compared to conventional diesel.  相似文献   
108.
This work presents numerical computations for the analysis of Dam-Break Flow using two-dimensional flow equations in a vertical plane. The numerical model uses the general approach of the simplified marker and cell method combined with the volume of fluid approach for the surface tracking. The time evolution of flow depth at the dam site and the evolution of the pressure distribution are investigated for both wet and dry bed conditions. The effect of the initially nonhydrostatic state on the long term surface profile and wave velocity are studied. These long term effects are found to be marginal in the case of wet-bed conditions, but are significant in dry-bed conditions. The dry-bed tip velocity immediately after the dam break, computed numerically, compares well with analytical results published previously. The time taken to obtain a constant flow depth at the dam site increases with decreasing initial depth ratio. The numerical result for this time elapse for dry-bed conditions is close to the experimentally obtained value.  相似文献   
109.
ABSTRACT: The quality evaluation of mushrooms was studied by storing fresh white button mushrooms (Agaricus bisporus) for 6 to 8 d, at various controlled temperature conditions (3.5 to 15 °C) and measuring the instrumental textural hardness and color of the mushroom cap for different product batches. A nonlinear mixed effect Weibull model was used to describe mushroom cap texture and color kinetics during storage considering the batch variability into account. Storage temperature was found to play a significant role in controlling texture and color degradation. On lowering storage temperature (i) the extent of the final browning extent in the mushroom after storage was reduced and (ii) the rate textural hardness losses was slowed down. A linear dependence of the final browning index with temperature was found. An Arrhenius type relationship was found to exist between the temperature of storage and storage time with respect to textural hardness. The average batch energy of activation was calculated to be 207 ± 42kJ/mol in a temperature range of 3.5 to 20 °C. Practical Application: This article evaluates how temperature abuse affects mushroom texture and color, applying methods that allow for the consideration of the natural product variability that is inherent in mushrooms. Its results apply to mushroom producers, retail distribution, and supermarkets for effective storage management.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号