首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   63篇
  国内免费   13篇
工业技术   829篇
  2024年   1篇
  2023年   28篇
  2022年   57篇
  2021年   97篇
  2020年   62篇
  2019年   49篇
  2018年   69篇
  2017年   53篇
  2016年   63篇
  2015年   33篇
  2014年   44篇
  2013年   55篇
  2012年   41篇
  2011年   50篇
  2010年   32篇
  2009年   18篇
  2008年   14篇
  2007年   14篇
  2006年   7篇
  2005年   6篇
  2004年   10篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1989年   1篇
  1982年   2篇
排序方式: 共有829条查询结果,搜索用时 46 毫秒
61.
Networks of phased array radars are generally able to provide better counter stealth target detection and classification. Each radar sensor (or node) generates information which requires transmission to a central authority that is able to evaluate the information. This requires a communications network to be established to allow transmission of information to and from any node. Each radar node is limited by range and degree and relies on the formation of a multi-hop network to facilitate these transmissions.This paper presents a model whereby the radar beam itself is used in the formation of a multi-hop network. The phased array’s multi-functional nature allows rapid switching between communications and radar function. A model of how the communication system could operate is presented, and an evolutionary optimisation algorithm based upon the concept of Pareto optimality is used for the topological design of the network. Finally, a simulation environment is presented to show the simulated performance of the communication model and designed networks.  相似文献   
62.
Mobile WiMAX is a 3rd generation broadband wireless technology that enables the convergence of mobile and fixed broadband networks through a wide area radio-access. Since January 2007, the IEEE 802.16 working group has been developing a new amendment the IEEE 802.16 standard i.e. IEEE 802.16 m as an advanced air interface to meet the requirements of ITU-R/IMT-Advanced for 4G systems. The mobile WiMAX air interface adopts orthogonal frequency division multiple access (OFDMA) as multiple access technique for its uplink and downlink to improve signal performance affected by multipath distortion. All OFDMA based networks, including mobile WiMAX, experience the problem of high peak-to-average power ratio (PAPR). This paper presents a discrete-sine-transform precoding technique based random-interleaved OFDMA (RI-OFDMA) uplink system for PAPR reduction in mobile WiMAX. The PAPR of proposed system is analyzed with root-raised-cosine pulse shaping filter to keep out of band radiation low and to fulfill the spectrum mask requirements. Simulation results show that, the proposed system has low PAPR compared to the Hadamard transform precoded RI-OFDMA uplink systems and the conventional RI-OFDMA uplink systems.  相似文献   
63.
Measurements of thermal conductivity and thermal diffusivity of twin pellets of Se80Te20-xInx (x = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used to determine the specific heat per unit volume of the said materials in the composition range of investigation. Results indicated that both the values of thermal conductivity and thermal diffusivity increased with the addition of indium at the cost of tellurium whereas the specific heat remained almost constant. This compositional dependence behaviour of the thermal conductivity and diffusivity has been explained in terms of the iono-covalent type of bond which In makes with Se as it is incorporated in the Se-Te glass.  相似文献   
64.
The preparation, characterization, and stability of lyophilized liposome-based formulation of mitoxantrone was investigated. Mitoxantrone was entrapped inside small, unilamellar liposomes composed of dioleoylphosphocholine (DOPC), cholesterol, and cardiolipin. The mean vesicle size and drug entrapment efficiency of the liposomes were ~ 150 nm and ~ 99%, respectively. Less than 1% of drug was lost and mean vesicle size remained unchanged after sterile filtration. The pre-lyophilized (pre-lyo) formulations were characterized by a differential scanning calorimetric (DSC) method. Results showed that the glass transition temperatures (Tg') increased as the molar ratios of sucrose:lipid and trehalose:lipid in the formulations were increased. The maximum Tg' of the pre-lyo formulations containing 10:1 sucrose:lipid and trehalose:lipid molar ratios were - 37°C and - 41°C, respectively. After reconstitution of the lyophilized cake of the sucrose-containing formulation, the mean vesicle size was comparable to pre-lyo liposome size. In vitro release studies showed that less than 2% of mitoxantrone was released after an extensive dialysis against phosphate buffered saline (PBS) at 37°C, indicating that the mitoxantrone was highly associated and retained inside the liposomes. Short-term stability studies of the sucrose-containing formulations revealed that the reconstituted and eight-fold diluted formulations were stable for up to 8 hours at room temperature. Long-term stability studies of lyophilized liposomal mitoxantrone showed that the lyophilized formulation was stable for up to 13 months after storage at refrigerated condition.  相似文献   
65.
Methotrexate (MTX) is one of the most consumed anti-cancer drugs in the pharmaceutical market around the world. The widespread occurrence of MTX in aquatic environment through hospital effluent has attracted increasing concern due to its potential to induce water pollution. In the present study, the degradation of MTX in aqueous medium was investigated by UV-activated peroxymonosulfate (PMS). A significant improvement in degradation rate by increasing UV intensity and PMS concentration while the decrease in degradation efficiency with the increase of solution pH and initial concentration of MTX was observed. The proposed UV/PMS process could achieve more than 90% MTX degradation in 30 min with a good mineralization degree (65%). A pseudofirst order kinetic model was employed and successfully predicted the degradation of MTX. The effect of other operational parameters such as the initial concentration of the targeted compound, dosage of oxidant (PMS), solution pH and UV intensity on the degradation rate were investigated. At the last, the main transform intermediates were identified using LC-MS and possible degradation pathways were proposed. The results show that UV/ PMS can be used as an efficient technology to treat pharmaceuticals such as methotrexate containing water and wastewater.  相似文献   
66.
Food Science and Biotechnology - Edible antimicrobial coating produced from chitosan (CS) and its derivative was applied to improve the shelf life of fresh strawberries at 10 °C....  相似文献   
67.
The present research study is focused on green fabrication of superparamagnetic Phytogenic Magnetic Nanoparticles(PMNPs), and then its surface functionalization with 3-Mercaptopropionic acid(3-MPA). The resulting material(i.e. 3-MPA@PMNPs) characterized by FTIR, powder XRD, SEM, TEM, EDX, VSM, BET and TGA techniques and then further employed for the investigation of the adsorptive removal of lead(Pb~(2+)) and cadmium(Cd~(2+)) ions from aqueous solutions in single and binary systems. The material showed fastest adsorptive rate(98.23%) for Pb~(2+) and(96.5%) Cd~(2+)within the contact time of 60 min at pH 6.5 in the single system. The experimental data were fitted well to Langmuir isotherm, indicated monolayer adsorption of both metal ions onto 3-MPA@PMNPs and an estimated comparable adsorptive capacity of 68.41 mg·g~(-1)(Pb~(2+)) and 79.8 mg·g~(-1)(Cd~(2+)) at p H 6.5. However, kinetic data agreed well with pseudo-second-order model, and indicated that the removal mainly supported chemisorption and/or ion-exchange mechanism. Thermodynamic parameters such asΔGo, ΔHo, and ΔSo, were-3259.20, 119.35 and 20.73 for Pb2+, and-1491.10, 45.441 and 7.87 for Cd~(2+) at temperature 298.15 K, confirmed that adsorption was endothermic, spontaneous and favorable. The material demonstrated higher selectivity of Pb~(2+) and its removal efficiency was(98.20 ± 0.3)% in binary system experiments. The material persisted performance up-to seven(07) consecutive treatment cycles without losing their stability and offered comparable fastest magnetic separation(35 s) from aqueous solutions. Therefore, it is recommended that the prepared material can be employed to remove toxic heavy metal ions from water/wastewaters and this "green" method can easily be implemented at large scale in low economy countries.  相似文献   
68.
A new AgO.CuO.WO3/rGO nanocomposite was designed for the investigation of the degradation ability of the hybrid material under visible light irradiation. The AgO, CuO, WO3 NPs, and AgO.CuO.WO3 hetero-metallic oxides were fabricated via the chemical co-precipitation method. The crystallite sizes and phase analyses were investigated by recording X-ray diffraction patterns. The crystallite sizes of three metal oxides in the AgO.CuO.WO3 hetero metal oxide were 16.7, 15.9, and 16.9 nm, respectively. The FESEM images at various magnifications were probed to study the morphology of synthesized materials. The micrographs of hetero-metallic oxides AgO.CuO.WO3 exposed that three metal oxides merged like small particles and gives a large bulbous appearance. EDX analyses confirmed the formation of required materials with high purity. FTIR data was in agreement with the literature which facilitated to ensure the purity of synthesized samples. The optical bandgap energy was calculated via the Tauc plot indicating that the blend of three metal oxides generated a new energy level in the electronic structure is suitable for photocatalysis in the presence of visible light. The bandgap energy of hetero metallic oxides was 1.25 eV which is less than individual metal oxides signifying the tuning of the bandgap. The incorporation of rGO in AgO.CuO.WO3 hetero-metallic oxides gives a new photocatalyst for optimum photodegradation of methylene blue in minimum time. The percentage degradation via AgO.CuO.WO3 was 87.20% in 70 min while the percentage degradation via AgO.CuO.WO3/rGO recorded by photocatalytic experiment was 95% in 40 min. The photocatalysis data revealed that AgO.CuO.WO3 hetero-metallic oxides-rGO nanocomposite ensured a strong potential to uptake organic dyes from water by promoting redox reactions during photocatalysis in the minimum time limit.  相似文献   
69.
Nonionic surfactants are highly stable and cost-effective and receiving acceptance for applications in many diverse fields including drug delivery, due to their distinctive properties. Here, we report on the synthesis and characterization of sulfanilamide-based nonionic surfactants for nanoscale vesicular drug loading applications. Nonionic surfactants were synthesized through alkylation of sulfanilamide with alkyl halides that possessed diverse degrees of lipophilicity. They were explored for their nanovesicular drug loading with Cefixime as a hydrophobic model drug. Drug-loaded nanovesicles were characterized for surface morphologies, size, size distribution, surface charge, and drug loading efficiency using atomic force microscopy (AFM), dynamic light scattering (DLS), and UV–visible spectrophotometry. All of the synthesized nonionic surfactants revealed their CMC values in 0.055–0.035 mM range depending upon the lipophilic chain length of surfactants. They caused a decreased hemoglobin release and low toxicity against cell culture. They self-assembled and loaded an increased amount of drug in the form of nanorange spherical shape niosomal vesicles. Results of the current study verify these synthesized nonionic surfactants are hemocompatible, nontoxic, and capable of self-assembling into nanorange niosomal vesicles. These niosomal vesicles can be suggested as safe and highly efficient nanocarriers for hydrophobic drug loading and delivery.  相似文献   
70.
Here, we have fabricated the spinel binary-metal oxide (FeCo2O4) via a solvent-free and cost-effective approach. The nanocomposites of the as-fabricated binary-metal spinel oxide have been prepared with three different conductive-matrices, namely r-GO, CNTs, and PANI, via ultra-sonication approach. The spinel phase and surface functionalities of the fabricated FeCo2O4 sample have been confirmed via XRD and FT-IR analyses, respectively. The morphological-structure and elemental composition of the fabricated samples have been probed via FESEM and EDX results. The role of added conductive-matrices in the improvement of the electrical conductivities of the fabricated nanocomposites has been investigated via I–V experiments. The electrochemical experiments, conducted in half-cell configuration, showed that FeCo2O4/PANI nanocomposite exhibited the highest specific capacitance (658.9 Fg-1) than that of the remaining two nanocomposites. Furthermore, FeCo2O4/PANI nanocomposite exhibited excellent cyclic stability as it lost just 8.3% of its initial specific capacitance even after 3000 cyclic tests. The superior capacitive-activity of the FeCo2O4/PANI nanocomposite is accredited to its high conductivity, large surface area, and synergy effects between the pseudocapacitance derived from the PANI and FeCo2O4 nanostructure. The electrochemical and electrical measurements suggested that FeCo2O4/PANI nanostructure is an emerging contender for energy storage applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号