首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   54篇
  国内免费   13篇
工业技术   846篇
  2024年   2篇
  2023年   29篇
  2022年   71篇
  2021年   97篇
  2020年   62篇
  2019年   49篇
  2018年   70篇
  2017年   53篇
  2016年   63篇
  2015年   33篇
  2014年   44篇
  2013年   55篇
  2012年   41篇
  2011年   50篇
  2010年   32篇
  2009年   18篇
  2008年   14篇
  2007年   14篇
  2006年   7篇
  2005年   6篇
  2004年   10篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1989年   1篇
  1982年   2篇
排序方式: 共有846条查询结果,搜索用时 15 毫秒
21.
A series of nanocrystalline Li0.25Ni0.5Fe2.25−xErxO4 (x=0.00, 0.02, 0.06, 0.08, and 0.10) ferrite powders, having a cubic spinel crystal structure and a low value of coercivity, was synthesized by the sol–gel auto-combustion route. The structure, morphology and magnetic properties of the prepared nanoferrites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the magnetic property measurement system (MPMS). A well-defined single phase spinel structure is confirmed in all the samples by X-ray diffraction analysis. The lattice parameters of the samples increase slightly with increasing the erbium content. The crystallite size of the Er-doped samples is smaller than that of pure Li–Ni ferrite, and decrease regularly in the range of 36.0–14.5 nm. It has been observed that the magnetic properties of these ferrites are strongly influenced by the added erbium content. The magnetic measurements indicate that saturation magnetization (Ms) and coercivity (Hc) decrease gradually with the increase of Er content in the lattice.  相似文献   
22.
Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. “Omics” technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.  相似文献   
23.
Electric power system applications demand for high-temperature dielectric materials. The improved performance of polymer nanocomposites requires improvement in their thermal conductivity & stability, dielectric stability and processing technique. However, they often lose their dielectric properties with a rise in temperature. Here, we offer a solution by incorporating electrically conducting material (MXene) and semiconducting inorganic nanoparticles (ZnO NPs) into an insulating PMMA polymer matrix to maintain high dielectric constant, both at the room and high temperature. Therefore, to achieve desirable thermal and dielectric properties is the main objective of the present study based on the homogeneous distribution of the nanofillers by in-situ bulk polymerization assisted by strong sonication in the corresponding polymer. The introduction of MXene and ZnO NPs into the PMMA not only acquires a substantial increment in the dielectric constant, to attain a value 437, with minimum energy loss of 0.36 at 25 Hz, but also improves the thermal conductivity of PMMA up to 14 times by causing the reduction of thermal resistance, which is actually responsible for the poor thermal conductivity of amorphous pure PMMA polymer. More importantly, hybrid PMMA/4:2 wt% MXene:ZnO nanocomposite leads to an excellent thermal stability. Moreover, further characterization of the synthesized nanocomposites by FTIR, SEM and XRD leads to the evaluation of strong interaction of ternary components with PMMA matrix.  相似文献   
24.
The potentials of silty clay(SC), acquired from Chaman, Balochistan, were investigated as adsorbent for Ni(Ⅱ)and Cd(Ⅱ) removal from contaminated media. The influence of different operating factors like dose, pH, temperature, and time of contact was explored, and optimum values were noted under batch adsorption method. Isothermal study was conducted with varying concentrations of solutions on optimized conditions and different adsorption models i.e., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich(D–R) isotherm, which were employed to interpret the process. The isothermal data of both Ni(Ⅱ) and Cd(Ⅱ) were well fitted to Langmuir isotherm suggesting the formation of monolayer of metal ions on silty clay. The values of adsorption capacity noted for Ni(Ⅱ) and Cd(Ⅱ) were 3.603 mg·g~(-1) and 5.480 mg·g~(-)1, respectively. Kinetic studies affirmed that pseudo second order(PSO) kinetics was being obeyed by the removal of Ni(Ⅱ) and Cd(Ⅱ). Thermodynamic variables like free energy change(ΔG°), enthalpy change(ΔH°) and entropy change(ΔS°) were calculated. The negative value of ΔG° and the positive values of ΔH° and ΔS° unfolded that the removal process of both metal ions of by SC was spontaneous, endothermic and feasible.  相似文献   
25.
In the current study, graphene oxide (GO) was prepared using green chemistry with modified Hummer's method without incorporating sodium nitrate (NaNO3). Solvent casting was employed to fabricate GO-doped poly(ethylene oxide) (PEO), that is, PEO/GO composites with various proportion of Na2SO4 and were then subjected to characterization via advanced spectroscopic techniques for different physicochemical aspects to estimate their potential applications as marketable products. XRD analysis explored that fabricated composites are more crystalline than neat PEO. PEO/GO/Na2SO4 composite films offered maximum crystallinity. SEM displayed the same trend. TG/DTA thermogram exposed better thermal stability than pristine polymer. FTIR studies confirmed complexation among hybrid's components. Elongation-at-break and Young's modulus displayed an enhancing behavior with an incremental loading of salt and filler. In terms of mechanical performance, composite of PEO with 0.37 wt % GO and 0.08 g salt was found to be an ideal composition during the course of study. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48376.  相似文献   
26.
Theoretical Foundations of Chemical Engineering - In this study, the simulations for first-order chemical reactions (constructive and destructive) in the flow of the Casson fluid with...  相似文献   
27.
Nonionic surfactants are capable of forming nano‐range vesicles upon self‐assembling in an aqueous medium. These vesicles are highly stable, low in toxicity, and cost‐effective. Owing to their ability to solubilize both hydrophilic and hydrophobic substances, they are of great interest for drug solubilization and delivery. This study describes the synthesis and characterization of two new nonionic surfactants and their screening for biocompatibility and drug loading potentials in nano‐scale niosomal vesicles. They were characterized through mass spectroscopy, 1HNMR, and FT‐IR. Their critical micelle concentration (CMC) was investigated using UV–vis spectrophotometry. The biocompatibility study was carried out through blood hemolysis and in vitro cytotoxicity assays. The surfactants have very low CMC values, are highly hemo‐compatible, and were nontoxic when tested against a cell culture. They were able to form nano‐range niosomal vesicles with large variation in their size. Both new surfactants were able to encapsulate increased amounts of the drug, in this case clarithromycin. The chemical nature of the drug remained intact in the niosomal vesicles. The results suggest that these nonionic surfactants could be promising drug delivery vehicles.  相似文献   
28.
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients’ quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients’ quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.  相似文献   
29.
This paper attempts to investigate the peristaltic mechanism of Williamson fluid in a pipe flow under the influence of variable radial magnetic field along with slip effects and compliant walls. Viscous dissipation and thermophoresis effects are also considered. The solutions of coupled nonlinear ordinary differential equations are obtained using the perturbation technique and results are graphically represented. The effects on heat, mass, velocity, and heat transfer coefficient are studied under various pertinent parameters. The outcomes of the present model can be applied in various fields of biomedical engineering where smart peristaltic pumps can be engineered to transport the biological fluids without any contamination. The scope of the present article is valuable in explaining the blood transport dynamics in small vessels while considering the important wall features with chemical reaction characteristics.  相似文献   
30.
Pressure cooker is a closed domestic pressure cooking vessel for use with external heat source and capable of maintaining nominal cooking pressure up to 1.0 kgf/cm2 (100 kN/m2 approximately) gauge nominal. In pressure cookers, despite the development of electronic controllers, the basic edition of such vessels are still equipped with fewer advanced safety functions due to economic constraints. Although the provision of pressure relief valves (PRV) is considered as one of the major protective features, however, pressure cooker failure accidents have been reported frequently. This paper describes the analysis of pressure cooker failure that failed prematurely after 1 year of service considering the design life of > 5 years. It was hypothesized that the root cause of pipe failure was either material degradation from exposure to an aggressive environment or an inherent defect in the pressure cooker. To test this hypothesis, a thorough visual examination of the exhumed failed section and the fracture surface was undertaken, followed by liquid penetrant testing, material identification, hardness testing, and metallographic analysis. Computational models of static and transient loading were also used to determine the stress distribution along the actual geometry of the failed cooker and to understand the main causes of recurrent failures. Visual and macroscale examination revealed significant body deformation at the lower dish-ended shell showing distorted locking grooves. It was also noticed that dirt and food particle, from the earlier cooking, were stuck in the pressure valves orifice. In addition, no evidence of metallurgical defect was observed. The inspection indicated that the cause of failure is primarily due to the choking of pressure relief value (PRV) and overpressure safety valves. Consequently, the pressure release occurred from the sealing side of the top lid, which resulted in its ejection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号