首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
工业技术   42篇
  2023年   3篇
  2022年   6篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  2007年   1篇
  2006年   1篇
  1994年   1篇
  1973年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
11.
In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 °C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine.  相似文献   
12.
For a future HCCI engine to operate under conditions that adhere to environmental restrictions, reducing fuel consumption and maintaining or increasing at the same time the engine efficiency, the choice of the fuel is crucial. For this purpose, this paper presents an auto-ignition investigation concerning the primary reference fuels, toluene reference fuels and diesel fuel, in order to study the effect of linear alkanes, branched alkanes and aromatics on the auto-ignition. The auto-ignition of these fuels has been studied at inlet temperatures from 25 to 120 °C, at equivalence ratios from 0.18 to 0.53 and at compression ratios from 6 to 13.5, in order to extend the range of investigation and to assess the usability of these parameters to control the auto-ignition. It appeared that both iso-octane and toluene delayed the ignition with respect to n-heptane, while toluene has the strongest effect. This means that aromatics have higher inhibiting effects than branched alkanes. In an increasing order, the inlet temperature, equivalence ratio and compression ratio had a promoting effect on the ignition delays. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process.  相似文献   
13.
14.
Al2O3 hollow fibres with different asymmetric macrostructures, i.e. various thickness ratios between a finger-like layer and a sponge-like layer, have been prepared by a phase inversion/sintering technique. Such asymmetric hollow fibres are used as substrates on which Pd membrane is deposited directly by an electroless plating (ELP) technique without any pre-treatment on substrate surface. Influences of the substrate macrostructure on hydrogen permeation through the Pd/Al2O3 composite membranes have been investigated both experimentally and theoretically. The hydrogen permeation through the Pd/Al2O3 composite membranes was not only determined by the Pd membrane thickness, but also by the macrostructural parameters of the substrate, such as effective porosity, mean pore size and pore size distribution etc. The thinner the Pd membrane, the higher the effective porosity is required to alleviate the substrate effect on the hydrogen permeation. Also, the deviation of the pore size is suggested to be around 1.2 for the further improved hydrogen permeation through the composite hollow fibre membranes.  相似文献   
15.
The objectives of the present study were (1) to present a comprehensiveanalysis of the microdosimetric quantities in both human andrat bronchial airways and (2) to assess the contribution ofthe crossfire alpha particles emitted from the alveolar regionto bronchial absorbed doses. Hit frequencies, absorbed dosesand critical microdosimetric quantities were calculated forbasal and secretory cell nuclei located at different depthsin epithelial tissue for each bronchial airway generation fordefined exposure conditions. Total absorbed doses and hit frequencieswere slightly higher in rat airways than in corresponding humanairways. This confirms the a priori assumption in rat inhalationexperiments that the rat lung is a suitable surrogate for thehuman lung. While the contribution of crossfire alpha particlesis insignificant in the human lung, it can reach 33% in peripheralbronchiolar airways of the rat lung. The latter contributionmay even further increase with increasing alveolar 214Po activities.Hence, the observed prevalence of tumors in the bronchiolarregion of the rat lung may partly be attributed to the high-linearenergy transfer crossfire alpha particles.  相似文献   
16.
Zeolitic imidazolate framework-302 (ZIF-302) was incorporated within a polyimide (PI) matrix in order to develop a highly selective and permeable mixed-matrix membrane (MMM) for gas separation processes. On the basis of varying fabrication procedures, two different MMMs were formed: a dense MMM (ZIF-302/d-PI) and a spongy, self-consistent MMM (ZIF-302/s-PI). The spongy membrane was shown to have self-consistent and disconnected pores with a reduction in overall membrane density. For ZIF-302/d-PI, a 1.2–1.5-fold increase in the permeability of H2, O2, N2, CO2, and CH4 was observed when compared with the pure d-PI membrane. For ZIF-302/s-PI, even better improvements (up to 19-fold higher) in permeance were achieved with negligible effects on selectivity. The gas transport mechanism was then analyzed and showed a considerable enhancement of diffusion coefficients for ZIF-302/s-PI, while ideal gas pair selectivities for CO2/N2, H2/CH4, and H2/N2 were found to be 24.8, 42.3, and 62.6, respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48513.  相似文献   
17.
18.
Neural Computing and Applications - Intelligent Transportation Systems (ITS) are the most widely used systems for road traffic management. The vehicle type classification (VTC) is a crucial ITS...  相似文献   
19.
A novel inorganic hollow fiber membrane reactor (iHFMR) has been developed and applied to the catalytic dehydrogenation of propane to propene. Alumina hollow fiber substrates, prepared by a phase inversion/sintering method, possess a unique asymmetric structure that can be characterized by a very porous inner surface from which finger-like voids extend across ∼80% of the fiber cross-section with the remaining 20% consisting of a denser sponge-like outer layer. In contrast to other existing Pd/Ag composite membranes, where an intermediate γ-Al2O3 layer is often used to bridge the Pd/Ag layer and the substrate, the Pd/Ag composite membrane prepared in this study was achieved by coating the Pd/Ag layer directly onto the outer surface of the asymmetric substrate. After depositing submicron-sized Pt (0.5 wt %)/γ-alumina catalysts in the finger-like voids of the substrates, a highly compact multifunctional iHFMR was developed. Propane conversion as high as 42% was achieved at the initial stage of the reaction at 723 K. In addition, the space-time yields of the iHFMR were ∼60 times higher than that of a fixed bed reactor, demonstrating advantages of using iHFMR for dehydrogenation reactions. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
20.
One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NOx, CO2, O2 and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 °C and 120 °C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NOx has been measured. It appeared that the CO, O2 and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO2. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO2 emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号