首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58794篇
  免费   3429篇
  国内免费   190篇
工业技术   62413篇
  2024年   30篇
  2023年   598篇
  2022年   619篇
  2021年   1679篇
  2020年   1227篇
  2019年   1363篇
  2018年   1708篇
  2017年   1634篇
  2016年   2055篇
  2015年   1546篇
  2014年   2489篇
  2013年   3670篇
  2012年   3781篇
  2011年   4557篇
  2010年   3367篇
  2009年   3499篇
  2008年   3354篇
  2007年   2632篇
  2006年   2433篇
  2005年   2075篇
  2004年   1901篇
  2003年   1838篇
  2002年   1615篇
  2001年   1363篇
  2000年   1222篇
  1999年   1179篇
  1998年   1949篇
  1997年   1256篇
  1996年   1015篇
  1995年   716篇
  1994年   597篇
  1993年   498篇
  1992年   375篇
  1991年   339篇
  1990年   333篇
  1989年   315篇
  1988年   244篇
  1987年   216篇
  1986年   177篇
  1985年   152篇
  1984年   124篇
  1983年   99篇
  1982年   49篇
  1981年   66篇
  1980年   53篇
  1979年   43篇
  1978年   47篇
  1977年   63篇
  1976年   97篇
  1975年   32篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
991.
Diblock copolymers with different poly(ε‐caprolactone) (PCL) block lengths were synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG‐OH, MW 2000) as initiator. The self‐aggregation behaviors and microscopic characteristics of the diblock copolymer self‐aggregates, prepared by the diafiltration method, were investigated by using 1H NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG–PCL block copolymers formed the self‐aggregate in an aqueous environment by intra‐ and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations of the block copolymer self‐aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The partition equilibrium constants (Kv) of pyrene, measured by fluorescence spectroscopy, revealed that the inner core hydrophobicity of the nanoparticles increased with increasing PCL chain length. The aggregation number of PCL chain per one hydrophobic microdomain, investigated by the fluorescence quenching method using cetylpyridinium chloride as a quencher, revealed that 4–20 block copolymer chains were needed to form a hydrophobic microdomain, depending on PCL block length. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3520–3527, 2006  相似文献   
992.
An aromatic liquid crystalline epoxy monomer based on biphenyl mesogen was synthesized and cured with three different aromatic diamines. The curing reaction characteristics were analyzed by DSC, and the data were introduced to the Kissinger equation to attain the kinetic parameters. Diglycidyl ether of 4,4′‐biphenyl (DGEBP)/4,4′‐diaminobiphenyl (DABP), and DGEBP/4,4′‐methylenediamine (MDA) systems showed an exotherm curing reaction after comelting of the monomers; the DGEBP/p‐phenylenediamine (PDA) system's curing reaction took place in the solid state without melting of monomers. The activation energy and preexponential factor for the DGEBP/DABP system were 55.6 kJ/mol and 4.0 × 106 min?1, respectively. Those values for DGEBP/MDA and DGEBP/PDA systems were 55.1 kJ/mol and 1.0 × 106 min?1 and 148.8 kJ/mol and 7.7 × 1019 min?1, respectively. The rate constant at 100°C for DGEBP/PDA is 2 times higher than those for DGEBP/DABP and DGEBP/MDA, which have almost the same values. Strictly speaking, the rate constant of DGEBP/DABP is a little higher than that of DGEBP/MDA, and these results are in good agreement with the DSC curves. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2419–2425, 2002  相似文献   
993.
Because silica has strong filler–filler interactions, a silica‐filled rubber compound shows a poor filler dispersion compared to a carbon black‐filled one. Improvement of the filler dispersion in silica‐filled styrene–butadiene rubber (SBR) compounds was studied using low molecular weight polybutadiene (liquid PBD) with the high content of 1,2‐unit. By adding the liquid PBD to the silica‐filled SBR compound, the filler dispersion and flow property are improved. The cure time and cure rate become faster as the 1,2‐unit content of the liquid PBD increases for the compounds containing the liquid PBD. The crosslink density increases linearly with increase in the 1,2‐unit content of the liquid PBD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3135–3140, 2003  相似文献   
994.
Summary New biodegradable hydrophobic polyurethane (PU)/hydrophilic poly (ethylene glycol) diacrylate (PEGDA) IPN was simultaneously synthesized with changing the molecular weight of PEGDA to investigate the effect of crosslinking density on the degree of phase separation. PU was modified using biodegradable poly(-caprolactone)diol and the hydroxy group of PEG was substituted to crosslinkable acrylate group having double bond, which induce photo-polymerization. The sturucture of PEGDA was confirmed by NMR. Because the reaction rate of PEGDA was faster than that of PU, the continuous matrix of the micro-separated PU/PEGDA IPNs having amphiphilic character was made of hydrophilic PEGDA-rich phase. All IPNs have sea-island morphology resulting from the suppressed phase separation. The effect of the degree of phase separation on blood compatibility was investigated.  相似文献   
995.
This study was conducted to investigate the effects of reaction pH condition and hardener type on the reactivity, chemical structure, and molecular mobility of urea–formaldehyde (UF) resins. Three different reaction pH conditions, such as alkaline (7.5), weak acid (4.5), and strong acid (1.0), were used to synthesize UF resins, which were cured by adding four different hardeners (ammonium chloride, ammonium sulfate, ammonium citrate, and zinc nitrate) to measure gel time as the reactivity. FTIR and 13C‐NMR spectroscopies were used to study the chemical structure of the resin prepared under three different reaction pH conditions. The gel time of UF resins decreased with an increase in the amount of ammonium chloride, ammonium sulfate, and ammonium citrate added in the resins, whereas the gel time increased when zinc nitrate was added. Both FTIR and 13C‐NMR spectroscopies showed that the strong reaction pH condition produced uronic structures in UF resin, whereas both alkaline and weak‐acid conditions produced quite similar chemical species in the resins. The proton rotating‐frame spin–lattice relaxation time (T1ρH) decreased with a decrease in the reaction pH of UF resin. This result indicates that the molecular mobility of UF resin increases with a decrease in the reaction pH used during its synthesis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2677–2687, 2003  相似文献   
996.
Microcapsule with poly(ethylene‐co‐vinylacetate) (EVA) core‐polyurethane (PU) shell structure was synthesized by interfacial polymerization in aqueous polyol dispersion with ethylene diamine as the chain extender of toluene diisocyanate in poly(vinyl alcohol) aqueous solution as the stabilizing agent. The effects of polyol constituent on the average particle size and distributions, morphologies, color strength, and friction fastness of core‐shell particles were investigated to design microcapsule. The friction fastness of printed fabrics with EVA core‐PU shell microcapsules became the increase to 4–5 grades. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 893–902, 2007  相似文献   
997.
We have synthesized a series of fully aliphatic polyimides (APIs) from bicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride (BOCA) and various aliphatic diamines, including linear aliphatic, flexible alicyclic, and rigid adamantyl diamines. We performed the polymerization reactions using one‐step syntheses in m‐cresol at elevated temperatures without the isolation of poly(amic) acid. The chemical composition and structure of the polymers were characterized by nuclear magnetic resonance (NMR) and infrared (IR) spectrometry. The characterization data are reported from analyses using gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), and wide‐angle X‐ray diffraction (WXAD) measurements. The polyimides are also subjected to solubility, solution viscosity, tensile strength, transparency, and dielectric constant measurements. The resultant polyimides possess well‐controlled molecular weight, reasonable intrinsic viscosity, good transparency, enhanced solubility, low dielectric constants, and high glass transition temperature, together with marginal thermal and mechanical stability. These properties were enhanced in copolyimides containing equimolar amounts of rigid and flexible moieties. These rigid‐rod APIs derived from the alicyclic dianhydride and aliphatic diamines are promising candidates as advanced materials for future applications in micro‐ and photoelectronic devices. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3316–3326, 2006  相似文献   
998.
Structural changes in β-isotactic polypropylene (β-iPP) during the heating were studied by means of differential scanning calorimetry and real-time in situ X-ray diffraction using a synchrotron source. Crystalline phase transformation and the memory effect caused by residual nuclei of α-iPP were observed during the heating of β-iPP. The memory effect observed in β-iPP during heating and crystallization is believed to be due to the existence of locally ordered α-from in the melt. The effect of local α-form order was probed by studying the behavior under heating of samples with a range of thermal histories. Samples were heated above the equilibrium melting temperature of iPP to remove all residual local order and the memory effect associated with this local order. The samples crystallized isothermally at different temperatures exhibited a significantly different melting and phase transformation behavior during heating. β-iPP is found to be an excellent material for the study of polymorphism, phase transformations, and characteristic memory effects in semicrystalline polymers.  相似文献   
999.
In this work, we have prepared bioartificial polymer blends using hyaluronate (HA) as a biological component and poly(vinyl alcohol)-borax association (PVAs) as a synthetic component, and investigated the rheological properties as well as morphology of the blends. When plotted against the blend composition, the rheological properties showed both positive and negative deviation from the linear additive mixing rule depending on thermal history. The blend showed enhanced viscosity at the composition of 20 wt% of HA and 80 wt% of PVAs, when PVA was dissolved at high temperature. The viscosity enhancement was caused by the network formation of HA aggregates in the micrometer scale. In addition, the network structure of HA aggregates was found to be fractal with the fractal dimension of 1.7. As PVA system also forms a network structure in the nanometer scale between hydroxyl groups of PVA and borate anions, the blend system is unique in that it has network structures in both micrometer and nanometer scales in one material. On the contrary, HA formed aggregates but not any network structure in the blend of the same composition but of the negative deviation. In conclusion, we showed that HA/PVAs blend system may have diverse morphology as well as very broad spectrum of rheological properties, and could suggest that the rheology and morphology of HA/PVAs blends can be designed not only by controlling composition but also by controlling thermal and deformation history of the components.  相似文献   
1000.
For the first time, highly ordered two-dimensional (2-D) and three-dimensional (3-D) mesoporous SiCN ceramics with high surface area and high thermal stability were prepared by nanocasting a preceramic polymer solution into mesoporous carbon templates, CMK-3 and CMK-8, respectively. As a negative replica of CMK-3 carbon, the obtained mesoporous SiCN ceramic possessed an ordered 2-D hexagonal mesostructure, which is similar to the structure of SBA-15 silica except for the reduced dimensions. An ordered 3-D cubic mesoporous SiCN ceramic was also fabricated using CMK-8 as a template. The wall of the mesoporous SiCN replicas consisted of an amorphous SiCN ceramic phase, which possessed high thermal stability at high temperature up to 1000 °C. N2-sorption isotherms revealed that these ordered mesoporous SiCN ceramics have high BET surface areas (up to 472 m2 g−1) and narrow pore-size distributions, which was preserved even after a re-treatment at 1000 °C in air. The use of carbon template played an important role in the preparation of mesoporous SiCN replicas and enhanced the thermal stability of the SiCN products. It is expected that many other types of ordered mesoporous ceramics can be prepared from nanoporous carbon by nanocasting method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号