首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   30篇
工业技术   411篇
  2023年   7篇
  2022年   15篇
  2021年   21篇
  2020年   10篇
  2019年   11篇
  2018年   13篇
  2017年   15篇
  2016年   18篇
  2015年   17篇
  2014年   18篇
  2013年   25篇
  2012年   28篇
  2011年   33篇
  2010年   19篇
  2009年   20篇
  2008年   14篇
  2007年   16篇
  2006年   10篇
  2005年   7篇
  2004年   9篇
  2003年   13篇
  2002年   4篇
  2001年   1篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
21.
Alanine : glyoxylate aminotransferase is one of three different enzymes used for glycine synthesis in Saccharomyces cerevisiae. The open reading frame YFL030w (named AGX1 in the following), encoding this enzyme, was identified by comparing enzyme specific activities in knockout strains. While 100% activity was detectable in the parental strain, 2% was found in a YFL030w::kanMX4 strain. The ORF found at that locus was suspected to encode alanine : glyoxylate aminotransferase because its predicted amino acid sequence showed 23% identity to the human homologue. Since the YFL030w::kanMX4 strain showed no glycine auxtrophic phenotype, AGX1 was replaced by KanMX4 in a Delta GLY1 Delta SHM1 Delta SHM2 background. These background mutations, which cause inactivation of threonine aldolase, mitochondrial and cytosolic serine hydroxymethyltransferase, respectively, lead to a conditional glycine auxotrophy. This means that growth is not possible on glucose but on ethanol as the sole carbon source. Additional disruption of AGX1 revealed a complete glycine auxotrophy. Complementation was observed by transformation with a plasmid-encoded AGX1.  相似文献   
22.
23.
New sulfated zirconias covering a wide range of pore diameters from micropores to macropores have been prepared by a combined use of two different structure-directing templates. The catalytic performance of these sulfated zirconias for the n-butane isomerization could be improved significantly compared to a standard displaying a maximum rate of isomerization of 1490 μmol/g h at 423 K. The materials remained their high activity even at 348 K. Moreover, deactivated materials could be reactivated to the original activity in an air-flow at 673 K several times. The newly designed materials were fully characterized by XRD, XPS, TPD of ammonia, IR spectroscopy and N2 adsorption to describe the formation of active surface centres and their morphology. The formation of active pyrosulfates with sulfate bands above 1400 cm?1 was followed by DRIFTS. An increased ratio of Brønsted-to-Lewis centres could be detected which can be accounted for the unexpected high activity.  相似文献   
24.
BACKGROUND: The possibility to use β‐cyclodextrin as biodegradable tensioactive and an electromagnetic field in order to improve the kinetic parameters of radical emulsion polymerization is of interest. Thus, the influence of different surfactants—sodium lauryl sulfate (SLS) and β‐cyclodextrin (CD)—on the pathway of emulsion polymerization of methyl methacrylate (MMA) and emulsion copolymerization of MMA with 2,3‐epoxypropyl methacrylate (GMA) performed with or without the presence of a continuous electromagnetic field (MF) was studied. RESULTS: The presence of the MF leads to a considerable increase of the conversion during the first part of the reaction if the classic surfactant (SLS) is used. The reactions performed without MF and with CD exhibit a decrease of the conversion and of the polymerization rate as compared with the variants using SLS. The swelling rate and the maximum degree of swelling vary with the surfactant nature and with the reaction conditions and MF presence. Data from thermogravimetry and differential scanning calorimetry evidence the dependences between the polymer characteristics and the preparation conditions. CONCLUSION: This research underlines the coupling possibilities of the influence of a MF—growth of the reaction rate and conversion explained through radical pairs mechanism—with a combination of the ‘cage’ effect and ‘conformational control’ afforded by CD. The presence of MF and CD during the syntheses leads to an increase of Tg and an increase of PMMA and P(MMA‐co‐GMA) thermal stability. Copyright © 2007 Society of Chemical Industry  相似文献   
25.
Co-pyrolysis of pine cone with synthetic polymers   总被引:1,自引:0,他引:1  
Mihai Brebu  Cornelia Vasile 《Fuel》2010,89(8):1911-1918
Biomass from pine cone (Pinus pinea L.) was co-pyrolyzed with synthetic polymers (PE, PP and PS) in order to investigate the effect of biomass and plastic nature on the product yields and quality of pyrolysis oils and chars. The pyrolysis temperature was of 500 °C and it was selected based on results from thermogravimetric analysis of the studied samples. Co-pyrolysis products namely gases, aqueous and tar fraction coming from biomass, oils from synthetic polymers and residual char were collected and analyzed. Due to the synergistic effect in the pyrolysis of the biomass/polymer mixtures, higher amounts of liquid products were obtained compared to theoretical ones. To investigate the effect of biomass content on the co-pyrolysis, the co-pyrolysis of pure cellulose as model natural polymer for biomass with polymer mixture was also carried out. In the presence of cellulose, degradation reaction leading to more gas formation and less char yield was more advanced than in the case of co-pyrolysis with pine cone. Co-pyrolysis gave polar oxygenated compounds distributed between tar and aqueous phase and hydrocarbon oils with composition depending on the type of synthetic polyolefin. Co-pyrolysis chars had higher calorific values compared to pyrolysis of biomass alone.  相似文献   
26.
The following contributions describe various research activities of the Department of Chemistry, University of Basel in the area of nanochemistry and supramolecular chemistry.  相似文献   
27.
The development of biophysical systems that enable an understanding of the structure and ligand‐binding properties of G‐quadruplex (GQ)‐forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ‐directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H‐Telo) DNA and RNA repeats in a cell‐like confined environment by using conformation‐sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2‐ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2′‐deoxy and ribonucleoside probes, composed of a 5‐benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H‐Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H‐Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy‐to‐handle RMs could provide new opportunities to study and devise screening‐compatible assays in a cell‐like environment to discover GQ binders of clinical potential.  相似文献   
28.
The compatibility of the hydroxypropyl cellulose (HPC) with maleic acid–vinyl acetate copolymer in the solid state was studied by thermogravimetry, thermo‐optical analysis, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and optical microscopy. It was established that physical interactions are prevalent in blends with a high content of HPC, whereas chemical interactions predominate in blends with a medium and low content of HPC. By increasing the temperature, the thermochemical reactions are favored. Thermal properties are dependent on the mixing ratio of the components. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2585–2597, 2003  相似文献   
29.
The biodegradation of poly(vinyl alcohol) and poly(vinyl alcohol)‐graft‐lactic acid copolymers was analyzed, using Trichotecium roseum fungus. The samples were examined during biodegradation at different periods of exposure. Structural modifications of the biodegraded samples were investigated by Fourier transform infrared‐attenuated total reflectance spectroscopy, and the surface morphology was investigated by scanning electron microscopy. The static light scattering results concluded that the weight average molecular mass (Mw) of the copolymers increased after biodegradation, because the fractions with low molecular weight of the copolymers were destroyed. The thermal behavior and stability of the samples before and after the biodegradation period were investigated by differential scanning calorimetry (DSC) and thermogravimetric analyses. The thermogravimetric analyses and their derivatives (TG‐DTG) showed that the thermal stability of the biodegraded samples was more raised comparatively to the unbiodegraded ones. The DSC results demonstrated that biodegradation took place in the amorphous domains of the investigated polymer samples and the crystallinity degree increased after 24 biodegradation days. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41777.  相似文献   
30.
Wax esters (WE) belong to the class of neutral lipids. They are formed by an esterification of a fatty alcohol and an activated fatty acid. Dependent on the chain length and desaturation degree of the fatty acid and the fatty alcohol moiety, WE can have diverse physicochemical properties. WE derived from monounsaturated long-chain acyl moieties are of industrial interest due to their very good lubrication properties. Whereas WE were obtained in the past from spermaceti organs of the sperm whale, industrial WE are nowadays mostly produced chemically from fossil fuels. In order to produce WE more sustainably, attempts to produce industrial WE in transgenic plants are steadily increasing. To achieve this, different combinations of WE producing enzymes are expressed in developing Arabidopsis thaliana or Camelina sativa seeds. Here we report the identification and characterization of a fifth wax synthase from the organism Marinobacter aquaeolei VT8, MaWSD5. It belongs to the class of bifunctional wax synthase/acyl-CoA:diacylglycerol O-acyltransferases (WSD). The protein was purified to homogeneity. In vivo and in vitro substrate analyses revealed that MaWSD5 is able to synthesize WE but no triacylglycerols. The protein produces WE from saturated and monounsaturated mid- and long-chain substrates. Arabidopsis thaliana seeds expressing a fatty acid reductase from Marinobacter aquaeolei VT8 and MaWSD5 produce WE. Main WE synthesized are 20:1/18:1 and 20:1/20:1. This makes MaWSD5 a suitable candidate for industrial WE production in planta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号